ТЕОРЕМА О РАСПРЕДЕЛЕНИИ ПРОСТЫХ ЧИСЕЛ

Решение 3-й проблемы Ландау

(ГИПОТЕЗА ЛЕЖАНДРА)

Гипотеза Брокарда

Logman Shihaliev

logman1@list.ru The 1982 Decision

+994505149553

ORCID: 0000-0003-1063-4712

Постановка задачи.

Множество натуральных чисел [1, (N+2)N] запишем в виде таблицы, по N последовательных чисел в каждой строке следующим образом (в данной статье о **«решето Эратосфена»** речь не идет). Докажем, что в каждой строке данной таблицы имеется как минимум одно простое число.

Таблица 1

1	2	3,	N - 1	N
N+1	N + 2	N + 3,	2N - 1	2 <i>N</i>
2N + 1	2N + 2	2 <i>N</i> + 3,	3N - 1	3 <i>N</i>
3N + 1	3N + 2	3 <i>N</i> + 3,	4N - 1	4 <i>N</i>
•••	•••	•••	•••	•••
mN+1	mN + 2	mN + 3,	(m+1)N-1	(m+1)N
•••	•••	•••	•••	•••
(N-1)N+1	(N-1)N+2	(N-1)N+3,	$N^2 - 1$	N^2
$N^2 + 1$	$N^2 + 2$	$N^2 + 3,$	(N+1)N-1	(N+1)N
(N+1)N+1	(N+1)N+2	(N+1)N+3,	(N+2)N-1	(N+2)N
$(N+2)N+1 = (N+1)^2$				

Аннотация

В данной статье доказывается, что каждая строка указанной таблицы содержит по крайней мере одно простое число. В произвольно взятой и первой строках таблицы параллельно (одновременно) вычеркиваем числа, кратные простым числам множества $L = \{2,3,5,...,P\}$. При этом количество вычеркнутых элементов в произвольной и первой строках таблицы остается сбалансированным (в произвольно взятой строке вычеркивается не больше чисел, чем в первой строке).

 $L = \{2,3,5,...,P\}$ – все простые числа в первой строке таблицы 1.

В некоторых строках таблицы количество чисел (до вычёркивания чисел), кратных некоторым простым числам (называемым *критическими*) множества $L = \{2,3,5,...,P\}$, может превышать соответствующее количество в первой строке на одну штуку. Эти «лишние» числа назовем *проблемными* числами.

В произвольно выбранной строке никогда не вычёркивается больше чисел, чем в первой. При необходимости (теоретически), чтобы сохранить баланс вычеркнутых чисел, некоторые проблемные числа могут быть оставлены невычеркнутыми. Однако, как показано в лемме 3, в результате полного процесса вычёркивания проблемные числа фактически исчезают. Кроме того, число 1 (единица) остаётся невычеркнутым в первой строке. Следовательно, в каждой строке таблицы остаётся как минимум одно невычеркнутое число — простое число.

TEOPEMA

Для любых натуральных чисел $N \ge 2$ и k, где $1 \le k \le N+2$, в интервале [(k-1)N+1,kN] найдётся по крайней мере одно простое число. Другими словами: каждая полная строка вышеуказанной таблицы содержит по крайней мере одно простое число.

Доказательство теоремы

Очевидно, что в первой строке таблицы всегда есть хотя бы одно простое число.

Согласно постулату Бертрана, для любого натурального числа $N \ge 2$ существует простое число в интервале [N, 2N]. Таким образом, и во второй строке таблицы (при $N \ge 2$) содержится как минимум одно простое число.

Теперь докажем, что, начиная с третьей строки и далее, каждая произвольно выбранная строка таблицы содержит как минимум одно простое число.

Обозначения

Обозначим через $t(m) = \left[\frac{N}{m}\right]$ и T(m) количество чисел, кратных $m \le N$, в первой строке таблицы до и после начала процесса вычеркивания соответственно.

Аналогично, через f(m) и F(m) обозначим количество чисел, кратных $m \le N$, в произвольно выбранной строке таблицы до и после начала вычеркивания соответственно.

Следовательно

$$f(m) = t(m) + \Delta_m \Rightarrow f(m) \ge t(m) \tag{1}$$

ЛЕММА 1

Докажем, что, либо $\Delta_m = 0$, либо $\Delta_m = 1$.

Доказательство Леммы 1

Докажем, что $\Delta_m < 2$.

Обозначим длину (число элементов) первой строки таблицы так:

$$N = (m-1) + \left(1 + \left(\left\lceil \frac{N}{m}\right\rceil - 1\right) \cdot m\right) + \alpha = \left\lceil \frac{N}{m}\right\rceil \cdot m + \alpha \tag{2}$$

Здесь
$$0 \le \alpha \le m - 1$$
, (3)

где (m-1) – количество чисел, не кратных m, в начале первой строки,

 α — количество всех чисел (в конце первой строки) после наибольшего числа, кратного m ($\alpha=0$ в случае $N\equiv 0 \pmod m$).

Предположим противное: существует строка, где $\Delta_m \ge 2$. Тогда её минимальная длина должна быть:

$$N = \left(\left(\left[\frac{N}{m} \right] + \Delta_m \right) - 1 \right) \cdot m + 1 = \left(\left(\left[\frac{N}{m} \right] + 2 \right) - 1 \right) \cdot m + 1 = \left[\frac{N}{m} \right] \cdot m + m + 1$$
 (4)

С учетом (3) и (4) получаем следующее противоречие:

$$\left[\frac{N}{m}\right] \cdot m + \alpha = \left[\frac{N}{m}\right] \cdot m + m + 1 \Rightarrow \alpha = m + 1$$

Не может быть $\Delta_m < 0$, так как минимальное значение f(m) и t(m) равно $\left[\frac{N}{m}\right]$. ЛЕММА 1 доказана.

Обозначения

Число m обозначим *добрым числом*, если $\Delta_m = 0$.

Число m обозначим $\kappa pumuческим числом, если <math>\Delta_m = 1$.

Если $f(m) = t(m) + 1 = \left[\frac{N}{m}\right] + 1$, то это обозначим так: f(m) увеличено в пользу числа $\left[\frac{N}{m}\right] + 1$, или запишем так $f(m) \to \left[\frac{N}{m}\right] + 1$.

Аналогично, если F(m) = T(m) + 1, то это обозначим так: F(m) увеличено в пользу числа T(m) + 1, или запишем так $F(m) \to T(m) + 1$.

Если в произвольно взятой строке $\Delta_m = 1$, то в данной строке имеется число F (см. (5), обозначим как *проблемное число*), кратное $m\left(\left[\frac{N}{m}\right]+1\right)=m\left[\frac{N}{m}\right]+m>N$

$$\begin{cases} F = zm\left(\left[\frac{N}{m}\right] + 1\right) = zP_1P_2 = zP_1\left(\left[\frac{N}{P_1}\right] + 1\right) \ge z(N+1) \\ m = P_1, \quad \left[\frac{N}{P_1}\right] + 1 = P_2, \quad P_1 \to P_2 \Rightarrow P_1 \to \left[\frac{N}{P_1}\right] + 1 \Rightarrow P_1P_2 \ge N+1 \end{cases}$$

$$(5)$$

 P_1 , P_2 , z — натуральные числа.

Свойство 1.

Очевидно, что в строках (таблицы 1) под номерами $\{1, m+1, 2m+1, ...\}$ значение $\Delta_m = 0$ сохраняется.

Следствие свойства 1. Во всех указанных строчках таблицы число m является добрым числом.

ЛЕММА 2

Пусть мы вычеркнули в произвольно взятой и в первой строках все числа, кратные $\partial o \delta po m y$ простому $p_1 \in L$, для которого выполнялось равенство:

$$f(p_1) = t(p_1).$$

После такого вычеркивания изучим количество оставшихся (не вычеркнутых) чисел, кратных произвольно взятому простому числу $p_i \in L \setminus p_1$, для которого изначально было

$$f(p_i) = \left[\frac{N}{p_i}\right] + \Delta_{p_i} = t(p_i) + \Delta_{p_i}.$$

После вычеркивания чисел, кратных $p_1 \in L$, разность $F(p_i) - T(p_i)$ обозначим как δ_{p_i} :

$$F(p_i) - T(p_i) = \delta_{p_i} \qquad (cm. (8))$$

При этом очевидно, что в первой и произвольно взятой строках не останется чисел, кратных p_1p_i .

Докажем, что

$$\delta_{p_i} \leq \Delta_{p_i}$$

Доказательство Леммы 2

Согласно (1) для простого числа $m=p_i$ и для составного $m=p_1p_i$ запишем:

$$f(p_i) = t(p_i) + \Delta_{p_i} \tag{6}$$

$$f(p_1 p_i) \ge t(p_1 p_i) \tag{7}$$

$$F(p_i) - T(p_i) = \delta_{p_i} \tag{8}$$

Из (6) вычитываем (7)

$$f(p_i) - f(p_1 p_i) \le t(p_i) - t(p_1 p_i) + \Delta_{p_i}$$
(9)

Очевидно, что

$$f(p_i) - f(p_1 p_i) = F(p_i)$$

$$t(p_i) - t(p_1 p_i) = T(p_i)$$

Последние два равенства подставим в (9) и получим

$$F(p_i) \le T(p_i) + \Delta_{p_i} \tag{10}$$

Сравним (8) и (10), получим

$$\delta_{p_i} \le \Delta_{p_i} \tag{11}$$

ЛЕММА 2 доказана.

Следствие 1 Леммы 2. Добрые числа в процессе вычеркивания *критическими* не становятся.

Следствие 2 Леммы 2. Если в произвольно взятой строке, при $\Delta_m = 1$, число $\left\lceil \frac{N}{m} \right\rceil + 1$ (либо один из его множителей) является добрым числом, то при вычеркивании чисел, кратных числу $\left\lceil \frac{N}{m} \right\rceil + 1$ (либо его доброму делителю), число m становится добрым. Например, для N=13 в третей строке таблицы (таблица 2) $\Delta_3 = 1$. Другими словами, в первой строке такой таблицы четыре числа (3,6,9,12) кратны 3, а в третей строке таких чисел пять (27,30,33,36,39). То есть $3 \to \left\lceil \frac{13}{3} \right\rceil + 1 = 5$. Число 5 в данной строке доброе число, то есть $\Delta_5 = 0$. В третей строке вычеркиваем два числа (30,35), кратные доброму числу 5. Параллельно и в первой строке вычеркиваем два числа (5,10), кратные доброму числу 5. В новом состоянии третей строки таблицы 2 количество чисел (27,33,36,39), кратных числу 3, стало столько же, сколько в первой строке (3,6,9,12) – четыре штуки. То есть, в начале было $f(3) = \left\lceil \frac{13}{3} \right\rceil + 1 = t(3) + 1 = 4 + 1 = 5$. А после вычеркивания чисел, кратных 5, для числа 3 получилось $\delta_3 = 0 \Rightarrow F(3) = T(3) + \delta_3 = T(3) + 0 = 4$.

Таблица 2

1	2	3	4	4	6	7	8	9	10	11	12	13
14	15	16	17	18	19	20	21	22	23	24	25	26
27	28	29	30	31	32	33	34	35	36	37	38	39

Следствие 3 Леммы 2. На любом этапе вычеркивания, если $\Delta_p = 0$ (или $\delta_p = 0$), то в произвольно взятой строке *таблицы* 1 вычеркнем не больше чисел кратных доброму p (если таковые имеются), чем в первой строке таблицы кратных p. При этом в произвольно взятой строке не останется ни одного числа, кратного p.

ЛЕММА 3

Если $\Delta_p = 1$, то в произвольно взятой строке имеется *критическое* простое p, и возможно имеется *проблемное* число F (см. (5)):

$$F = zm\left(\left[\frac{N}{m}\right] + 1\right) = zP_1P_2 = zP_1\left(\left[\frac{N}{P_1}\right] + 1\right) \ge z(N+1).$$

Докажем, что после вычеркивания (в произвольно взятой строке вычеркиваем не больше чисел, чем в первой строке) чисел, кратных всем простым числам множества $L = \{2,3,5,...,P\}$, в таблице не останется ни одного не вычеркнутого проблемного числа F.

Доказательство Леммы 3

Доказательства от противного. Предположим, что в конце вычеркивания в произвольно взятой строке некоторые *проблемные* числа F остались не вычеркнутыми. Составим таблицу всевозможных таких *проблемных* чисел. Здесь $\{P_1, P_2, P_3, P_4\}$ множество всевозможных *критических* чисел:

Таблица 3

Вспомогательная лемма 3.1	Вспомогательная лемма 3.2	Вспомогательная лемма 3.3	Вспомогательная лемма 3.4
$F_1 = P_1 P_2 P_3 P_4$	$F_2 = P_1^3$	$F_3 = P_1 P_2^2$	$F_4 = P_1 P_2 P_3$

ВСПОМОГАТЕЛЬНАЯ ЛЕММА 3.1

Если проблемное число имеет вид $F_1 = P_1 P_2 P_3 P_4$, то согласно (5) для $\left\{P_{\mu}, P_j, P_{y}, P_r\right\} = \left\{P_1, P_2, P_3, P_4\right\}$ выполняются неравенства:

$$P_{\mu} \cdot P_{j} \ge N + 1$$
, $P_{\nu} \cdot P_{r} \ge N + 1$.

Следовательно,

$$F_1 = P_1 P_2 P_3 P_4 \ge (N+1)^2 \tag{12}$$

(12) противоречит предположению, так как число $(N+1)^2$ находится вне таблицы.

ВСПОМОГАТЕЛЬНАЯ ЛЕММА 3.1 доказана.

ВСПОМОГАТЕЛЬНАЯ ЛЕММА 3.2

Если не вычеркнутое проблемное число имеет вид $F_2 = P_1^3$, то возможен один вариант:

$$P_1 \rightarrow P_1$$
,

Следовательно

$$P_1 \to P_1 \Rightarrow P_1 = \left[\frac{N}{P_1}\right] + 1 \Rightarrow P_1 \cdot \left(\left[\frac{N}{P_1}\right] + 1\right) = P_1^2 \Rightarrow N + 1 \le P_1^2 < 2N$$

Во второй строке таблицы число P_1^2 является наименьшим числом, кратным P_1 .

Запишем $P_1^2 - P_1 < N$, и продолжим следующим образом

$$P_1^2 - N = \gamma < P_1 \Rightarrow \gamma \le P_1 - 1 \Rightarrow P_1 \gamma \le P_1^2 - P_1 < N \Rightarrow P_1 \gamma < N$$

и следовательно

$$P_1^2 - N = \gamma \Rightarrow P_1^3 - P_1 N = P_1 \gamma \Rightarrow P_1^3 = P_1 N + P_1 \gamma$$
 (13)

(13) означает (так как $P_1\gamma < N$), что число $F_2 = P_1^3 = P_1N + P_1\gamma$ находится в (P_1+1) -й строке таблицы. Согласно следствию **Свойства 1**, число P_1 является добрым, и значит, число $F_2 = P_1^3$ не является проблемным.

ВСПОМОГАТЕЛЬНАЯ ЛЕММА 3.2 доказана.

ВСПОМОГАТЕЛЬНАЯ ЛЕММА 3.3. Если не вычеркнутое проблемное число имеет вид $F_3 = P_1 P_2^2$, то возможны четыре варианта:

Таблица 4

Вариант А	Вариант В	Вариант С	Вариант D
$P_1 \to P_2 \to P_1$	$P_1 \to P_2 \to P_1$	$P_1 \to P_2 \to P_2$	$P_1 \rightarrow P_2 \rightarrow P_2$
$P_1 > P_2$	$P_1 < P_2$	$P_1 > P_2$	$P_1 < P_2$

Вариант А. Если для $F_3 = P_1 P_2^2$ выполняется $P_1 \to P_2 \to P_1$ и $P_1 > P_2$, то число $P_1 P_2$ является наименьшим числом во второй строке таблицы, кратным одновременно и P_1 , и P_2 . Далее, для $\gamma < P_2 < P_1$ запишем $P_1 P_2 = N + \gamma$. Последнее умножим на P_2 , и получим:

$$F_3 = P_1 P_2^2 = P_2 N + P_2 \gamma$$

Так как $\gamma < P_2$, то $P_2 \gamma < N$. В противном случае число $P_2 \gamma < P_2^2$ должно находиться во второй строке. А это не возможно $(P_1 P_2$ наименьшее число во второй строке, кратное P_2). Получается, что, число $F_3 = P_1 P_2^2 = P_2 N + P_2 \gamma$ находится в $(P_2 + 1)$ -й строке, следовательно, согласно следствию СвойСТВА 1, число P_2 не критическое, и число $F_3 = P_1 P_2^2$ не проблемное.

Вариант В. Аналогично для $P_1 \to P_2 \to P_1$ и $P_1 < P_2$ доказываем, что число P_2 не *критическое*, и число $F_3 = P_1 P_2^2$ не *проблемное*. Число $P_1 P_2$ является наименьшим числом во второй строке таблицы, кратным одновременно и P_1 , и P_2 . Далее, для $\gamma < P_1 < P_2$ запишем $P_1 P_2 = N + \gamma$. Последнее умножим на P_2 , и получим

$$F_3 = P_1 P_2^2 = P_2 N + P_2 \gamma$$

Так как $\gamma < P_1$, то $P_2 \gamma < N$. В противном случае число $P_2 \gamma < P_2^2$ должно находиться во второй строке. А это не возможно $(P_1 P_2$ наименьшее число во второй строке, кратное P_2). Получается, что, число $F_3 = P_1 P_2^2 = P_2 N + P_2 \gamma$ находится в $(P_2 + 1)$ — й строке, следовательно, согласно следствию Свойства 1, число P_2 не критическое, и число $F_3 = P_1 P_2^2$ не проблемное.

Вариант С. Если $P_1 o P_2 o P_2$ и $P_2 < P_1$, то число P_2^2 является наименьшим числом во второй строке таблицы, кратным P_2 . Запишем $P_2^2 = N + \gamma$. Умножим на P_1 и получим $P_1P_2^2 = P_1N + P_1\gamma$. С учетом $\gamma < P_2 < P_1$ получаем $P_1\gamma < N$. Число $F_3 = P_1P_2^2 = P_1N + P_1\gamma$ находится в (P_1+1) — й строке, следовательно, согласно следствию **Свойства 1**, число P_1 не *критическое*, и число $F_3 = P_1P_2^2$ не *проблемное*.

Вариант D. Если $P_1 \to P_2 \to P_2$ и $P_1 < P_2$, то получается, что числа P_1P_2 и P_2^2 одновременно являются наименьшими числами во второй строке, кратными P_2 . А это не возможно по причине $P_1 \neq P_2$.

ВСПОМОГАТЕЛЬНАЯ ЛЕММА 3.3 доказана.

ВСПОМОГАТЕЛЬНАЯ ЛЕММА **3.4**. Если не вычеркнутое проблемное число имеет вид $F_4 = P_1 P_2 P_3$, то имеется три варианта

Таблица 5

Вариант Е	Вариант F	Вариант G		
$P_1 \to P_2 \to P_3 \to P_1$	$P_1 \to P_2 \to P_3 \to P_2$	$P_1 \to P_2 \to P_3 \to P_3$		

Вариант Е. Если $P_1 \to P_2 \to P_3 \to P_1$, то теоретически получается:

- * $P_1 \to P_2$. Число $P_1 P_2$ во второй строке наименьшее число, кратное P_1 .
- ** Число P_3P_1 во второй строке наименьшее число, кратное P_3 . Получается $P_1P_2 < P_3P_1$.
- *** Число P_2P_3 во второй строке наименьшее число, кратное P_2 . То есть, теоретически должно быть $P_2P_3 < P_1P_2$.

Получаем:

$$\begin{cases} P_{2}P_{3} < P_{1}P_{2} \Rightarrow P_{3} < P_{1} \\ P_{2}P_{3} > P_{3}P_{1} \Rightarrow P_{2} > P_{1}, \\ P_{1}P_{2} < P_{3}P_{1} \Rightarrow P_{2} < P_{3} \end{cases}$$

По первым двум неравенствам получается $P_3 < P_1 < P_2 \Rightarrow P_3 < P_2$. А это противоречит третьему неравенству, где $P_2 < P_3$.

Вариант F. Если $P_1 \rightarrow P_2 \rightarrow P_3 \rightarrow P_2$, то теоретически получается:

- * $P_1 \to P_2$. Число $P_1 P_2$ во второй строке наименьшее число, кратное P_1 . Запишем $P_2 P_3 = N + \gamma$.
- ** $P_2 \to P_3$. Число $P_2 P_3$ во второй строке наименьшее число, кратное P_2 . Заметим, что $(\gamma < P_2)$. То есть, должно быть $P_2 P_3 < P_1 P_2$.
- *** Так же условие $P_3 \to P_2$ означает, что число $P_2 P_3$ во второй строке наименьшее число, кратное P_3 . Заметим, что $(\gamma < P_3)$.

 $(P_2P_3=N+\gamma)$ умножим на P_1 , получим $P_1P_2P_3=P_1N+P_1\gamma$. Так как $\gamma < P_2$, $\gamma < P_3$, то $P_1\gamma < P_1P_2$. Последнее означает, что число $P_1\gamma$ находится в первой строке (P_1P_2) во второй строке наименьшее число, кратное P_1). Получается, что число $F_4=P_1P_2P_3=P_1N+P_1\gamma$ находится в (P_1+1) — й строке, следовательно, согласно следствию Свойства 1, число P_1 не критическое, и число $F_4=P_1P_2P_3$ не проблемное.

Вариант G. Если $P_1 \to P_2 \to P_3 \to P_3$, то теоретически получается:

* Число P_1P_2 во второй строке наименьшее число, кратное P_1 .

** Число P_2P_3 во второй строке наименьшее число, кратное P_2 . Получаем $P_2P_3 < P_1P_2$

Запишем $P_2P_3=N+\gamma\Rightarrow\gamma< P_2$. Умножим на P_1 , получим $P_1P_2P_3=P_1N+P_1\gamma$.

Так как $\gamma < P_2$, то число $P_1\gamma$ находится в первой строке (P_1P_2) во второй строке наименьшее число, кратное P_1). Значит, число $F_4 = P_1P_2P_3 = P_1N + P_1\gamma$ находится в (P_1+1) — й строке, следовательно, согласно следствию **Свойства** 1, число P_1 не критическое, и число $F_4 = P_1P_2P_3$ не проблемное.

ВСПОМОГАТЕЛЬНАЯ ЛЕММА 3.4 доказана.

ЛЕММА 3 доказана.

ТЕОРЕМА доказана.

Следствие 1. Решение 3-й проблемы Ландау (гипотеза Лежандра)

Для любого натурального N между N^2 и $(N+1)^2$ найдется хотя бы одно простое число.

Очевидно, что 3-я проблема Ландау (гипотеза Лежандра) является частным случаем теоремы о распределении простых чисел, и для любого натурального N между N^2 и $(N+1)^2$ найдется хотя бы два простых числа, так как в указанном интервале имеется две полных ($maблица\ l$) строк (минимум по одному простому числу в каждой).

Следствие 2. Гипотеза Брокарда. Для любого натурального числа n между p_n^2 и p_{n+1}^2 (где $p_n > 2$ и p_{n+1} два последовательные простые числа) найдется хотя бы четыре простых числа.

Для любого простого числа $p_n > 2$ можно записать так:

$$p_n=N-1$$
 и $p_n+2=N+1$

Между $p_n^2 = (N-1)^2$ и $(p_n+2)^2 = (N+1)^2$ имеется четыре полных строк (таблица 6), в каждой из которых имеется минимум по одному простому числу. Мы учитываем, что минимальная разница между последовательными (начиная с тройки) простыми числами равно 2, и поэтому выбрали $p_n = N-1$ и $p_n+2=N+1$. Значит, чем больше разности между последовательными простыми числами, тем больше простых между их квадратами.

Таблица 6

	 (N-2)N
$(N-1)^2$	 (N-1)N
(N-1)N+1	 N^2
$N^2 + 1$	 (N+1)N
(N+1)N+1	 (N+2)N
$(N+1)^2$	