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PROBLEM STATEMENT

Let us write the set of natural numbers in the form of a table, where each row contains
consecutive numbers (note: this article does not concern the “Sieve of Eratosthenes”).
We will prove that each row of this table contains at least one prime number.

table 1
1 2 3,... N-1 N
N+1 N +2 N +3,.. 2N -1 2N
2N +1 2N + 2 2N + 3, ... 3N -1 3N
3N +1 3N + 2 3N +3, ... 4N —1 4N
mN + 1 mN + 2 mN + 3, ... (m+ 1N -1 (m+ 1N
(N-DN+1 | (N—1N+2 | (N—1)N+3,.. N2z -1 N?
N% +1 N2 +2 N% +3,.. (N+1DN -1 (N + 1N
(N+DN+1 | N+ DN+2 |[(N+DN+3,...| (N+2)N—1 (N + 2)N
(N+2N+1=(N+1)2

ABSTRACT

This article proves that each row of the specified table contains at least one prime
number. In the arbitrarily taken and first rows of the table, in parallel (simultaneously)
we cross out the numbers that are multiples of the prime numbers of the set:



L =1{2,3,5,..., P} —the set of all primes of the first row.

At the same time, the number of deleted elements in the arbitrary and first rows of the
table remains balanced (in an arbitrary line, no more numbers are crossed out than in

the first line).

In some rows of the table, the number of numbers is (before crossing out the numbers),
multiples of some prime numbers (called critical numbers) of the set L={2,3,5,...,P}
may exceed the corresponding number in the first row by one piece. Let's call these
"extra" numbers problematic numbers.

In any arbitrarily selected row, no more numbers are eliminated than in the first row.
If necessary (theoretically), to preserve the balance of eliminated numbers, some
problematic numbers may be left uneliminated. However, as shown in Lemma 3,
problematic numbers ultimately disappear during the full elimination process.
Moreover, the number 1 remains uneliminated in the first row. Therefore, at least one
number remains uneliminated in each row of the table — a prime number.

THEOREM

For any natural numbers N > 2 and k, where 1 < k < N + 2, there exists at least
one prime number in the interval [(k — 1)N + 1, kN].

In other words, every full row in the above-described table contains at least one
prime number.

PROOF OF THE THEOREM
It is evident that the first row of the table always contains at least one prime number.

According to Bertrand’s Postulate, for any natural number N > 2, there exists a
prime number in the interval [N, 2N]. Therefore, the second row of the table (for
N > 2) also contains at least one prime number.

Now we will prove that starting from the third row and onward, every arbitrarily
selected row in the table contains at least one prime number.

NOTATION

Let's use t(m) = [%] and T (m) to denote the number of multiples of m < N in the
first row of the table before and after the start of the strikeout process, respectively.

Similarly, using f(m) and F(m), we denote the number of multiples of m < N in a
randomly selected row of the table before and after the start of strikeout, respectively.

Then:
f(m) =t(m) + Ay, = f(m) = t(m) (1)



Lemma 1

We prove that either A,,= 0, or A,,= 1.

PROOF OF LEMMA 1

Let us prove that A, < 2.

Let the length of the first row (i.e., number of elements) be:

N=(m—1)+(1+([%]—1)-m)+a=[%]-m+a (2)
Where:
0<asm-1 3)
Where:

(m — 1) is the number of elements not divisible by m at the start of the first row;

a is the number of all numbers (at the end of the first line) after the largest number,
which is a multiple of m (@ = 0 in the case of N = 0(mod m)).

Assume the contrary: that there exists a row where A,,= 2. Then its minimum length
would be:

V(o)) me = (49 1) e memer

But using equations (3) and (4), we obtain a contradiction:
S| mt+a=[3| m+m+1isa=m+1
m m

It cannot be A,,, < 0, since the minimum values of f(m) and t(m) are [%]

LEMMA 1 is proven.
DEFINITIONS

e A number is called a good number if A,,,= 0.
e A number is called a critical number if A,,,= 1.

e If flm)=t(m)+1= [%] + 1, we say: the value of f(m) is "increased in favor
of the number" || + 1 (let's write it this way £(m) - [ + 1).

e Similarly, if F(m) = T(m) + 1, we say: the value of F(im) is "increased in favor
of the number" T(m) + 1 (let's write it this way F(m) — T(m) + 1).
e I[f, in an arbitrarily selected row, A,,= 1, then that row contains a number F (see

(5). called a problematic number) divisible by m (|| + 1) = m [~ +m > N.
F=zm(|7]+1) = zP,P, = 2P, ([Pﬂl] +1)2z(N +1)
m = P, [Pll]+1=P2, P1—>P2=>P1—>[Pil]+1=>P1P22N+1 ®

Py, P,, z — are natural numbers



PROPERTY 1

It is obvious that in the rows with indices {1,m + 1,2m + 1, ...}, the value A,,= 0
remains constant.

Corollary of PROPERTY 1
In all the specified rows of the table, m is a good number.

LEMMA 2

Let's assume that we have crossed out in the arbitrarily taken and in the first lines all
the numbers that are multiples of the good prime p; € L, for which the following was
true:

f(p1) = t(ps).
Let us now analyze the number of remaining (i.e., not eliminated) numbers divisible
by some other prime p; € L \ p; for which initially:

F@) = 5]+ 8p= t) + 8,

And after crossing out the numbers that are multiples of p; € L, we denote the
difference F(p;) — T(p;) as &

F(p) = T(py) = by, (see (8))

At the same time, it is obvious that in the first and randomly selected rows there will
be no numbers that are multiples of p; p;.

Let's prove that:

6Pi = Api

PROOF OF LEMMA 2

According to (1), for a prime number m = p; and for a composite number m = p;p;
we write:

fp) = t(p) + 4y, (6)
f(p1pi) = t(p1pi) (7
F(p) —T(py) = 6y, ®
Subtract (7) from (6):

f) — f(p1p) < t(py) — t(p1p) + 4y, 9)

But from definitions:

f() — f(p1p) = F(p)

t(py) — t(p1py) = T(py)

We substitute the last two equalities in (9) and get

F(p)) < T(0) + by, (10)
Compare (8) and (10), we conclude:



Op, < Ap, (11)
LEMMA 2 is proven.

Corollary I of LEMMA 2

Good numbers do not become critical during the process of crossing out.

Corollary 2 of LEMMA 2
Suppose that in an arbitrary row A,,= 1 (that is m — [%] + 1). Moreover, if [%] +1

(or one of its multipliers) is a good number, then after crossing out the numbers that
are multiples of the good [%] + 1 (or its good divisor), the number m also becomes
good.

For example, for N = 13 in the third row of the table (table 2) A;= 1. In other words,
in the first row of such a table, four numbers 3, 6,9, 12 are multiples of 3, and in the

third row there are five such numbers 27, 30, 33,36,39. That is, 3 — [2—3] +1=5.

The number 5 in this line is a good number, that is, A;= 0. In the third line, we cross
out two numbers (30, 35) that are multiples of the good number 5. In parallel, and in
the first line, we cross out two numbers (5, 10) that are multiples of the good number
5. In the new state of the third row of table 2, the number of numbers (27, 33,36, 39)
that are multiples of the number 3 has become the same as in the first row (3, 6,9, 12)
— four. That is, in the beginning there was f(3) = [%] +1=t(3)+1=4+1=5.

And after crossing out the numbers that are multiples of 5, for the number 3 it turned
outd3 =0=>FB3)=T@B)+6=T3)+0=4.

table 2
1 2 3 4 5 6 7 8 9 189 | 11 | 12 | 13

14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26

27 | 28 | 29 | 38 | 31 |32 | 33 |34 | 3| 36 | 37 | 38 | 39

Corollary 3 of LEMMA 2

At any stage of deletion, if A,= 0 (or §, = 0), then in an arbitrary row of table I we
will delete no more numbers of multiples of a good p (if any) than in the first row of
the table of multiples of p. In this case, there will not be a single multiple of p left in
an arbitrary line.

LEMMA 3

If Ap= 1, then a critical prime p exists within an arbitrary string, and a problematic
number F may also be present (see (5)):



F=zm(|5|+1) = zP,P, = zP, ([Pﬁl] +1) 2 z(N +1)

We aim to prove that, after removing all numbers (based on previous results) divisible
by the primes in the set L = {2,3,5, ..., P} no problematic number F remains in the
table.

PROOF OF LEMMA 3

Proof of the contrary. Suppose that after the elimination process, some problematic F
numbers remain not crossed out in a randomly selected row. Let's make a table of all
possible such problematic numbers. Here {P;, P,, P;, P,} are the set of all possible
critical numbers (table 3):

table 3
Auxiliary lemma 3.1 | Auxiliary lemma 3.2 | Auxiliary lemma 3.3 | Auxiliary lemma 3.4
Fy = P,P,P3P, F2=P13 F3=P1P22 Fy = P1P,P3

AUXILIARY LEMMA 3.1
If the problematic number is of the form F;, = P;P,P;P,, according to (5) for
{P,,P;, P, P.} = {P,, P,, P3, P,} run inequality:
B,-P=N+1, B -B=N+1.
Therefore,
F, = P,P,P;P, = (N + 1)? (12)
(12) contradicts the assumption, since the number (N + 1)? is outside the table.
AUXILIARY LEMMA 3.1 is proven.
AUXILIARY LEMMA 3.2
If the problematic number is of the form F, = P, then one option is possible:
Py > Py
Therefore: P, > Py = Py = >+ 1= P - ([3] +1) = P25 N+ 1< P? < 2N

1 1
In the second row of the table, the number P{ is the smallest multiple of P;. Let's write
P? — P; < N, and continue as follows:
PP—N=y<P,=>y<P—-1=>Py<P’?—P,<N=>Py<N

Therefore,
PP—N=y=>P}—PN=Py=P>=PN+Py (13)
(13) means (since P;¥ < N) that the number F, = P = P,N + P,y isinthe (P; + 1)th

row of the table 1. According to property 1, the number P; is good, which means that
the number F, = P; is not problematic.

AUXILIARY LEMMA 3.2 is proven.



AUXILIARY LEMMA 3.3

If the problematic number has the form F; = P, PZ, then there are four possible

options (table 4):
table 3
OPTION A OPTION B OprTION C OprTION D
P> P,-> P P, > P,— P P> P,— P, P> P,- P,
P, >P, P, <P, P, >P, P, <P,

OPTION A. Here, the number P; P, is the smallest number in the second row of the
table, a multiple of both P; and P,. So P} < N. Next, y < P, < P; we write P, P, =
N + y. Multiply the latter by P, and we get:

F; = P,P? = P,N + P,y

Since ¥ < P, then P,y < N. This means that the number F; = P;P? = P,N + P,y is

in the row under the number (P, + 1). According to property 1, the number P, is good,
which means that the number F; = P, P} is not problematic.

OprTION B. Here, the number P; P, is the smallest number in the second row of the
table, a multiple of both P; and P,. Next, y < P; < P, we write P,P, = N +.
Multiply the latter by P, and we get:

F3 =P1P22 =P2N+P2y

Since y < P; then P,y < N. This means that the number F; = P,P? = P,N + P,y is
in the row under the number (P, + 1). According to property 1, the number P, is good,
which means that the number F; = P, P} is not problematic.

OPTION C. Here, the number PZ is the smallest number in the second row of the table
1, amultiple of P,. Let's write P; = N + y. Multiply the latter by P, and we get:

P1P22 =P1N+P1y
Taking into account y < P, < P; we obtain P;¥ < N. This means that the number
F; = P,P? = PN + Py is in the row under the number (P; + 1). According to

property 1, the number P; is good, which means that the number F; = P, PZ is not
problematic.

OPTION D. Here it turns out that the numbers P, P, and P? are simultaneously the
smallest numbers in the second row that are multiples of P,. And this is not possible
because of P; # P,.

AUXILIARY LEMMA 3.3 is proven.
AUXILIARY LEMMA 3.4

If the problematic number has the form F, = P; P,P;, then there are three possible
options (fable 5):



table 5

OprTION D OPTION F OPTION G

P> P, > P; > P P> P, > P; > P, Py - P, » P; - P;

OpTIONE. If P, —» P, —» P; = P;, then theoretically it turns out:
* P; = P,. The number P; P, in the second row is the smallest multiple of P;.

** P; — P;. The number P;P; in the second row is the smallest multiple of P5. It turns
out P, P, < P;P;.

**% P, = P;. The number P,P; in the second row is the smallest multiple of P,. It
turns out P2P3 < P1P2.

The result is a contradiction:
P,P; < P,P,=>P; <P,
P,P; > P;P, =P, > P,
P,P, < P;P, = P, < P,

P, <P, <P,=P; <P,
P, < P,

F, = P, P,P; is not problematic.

OpTIONF. If P; - P, — P; — P,, then theoretically it turns out:

* P; = P,. The number P, P, in the second row is the smallest multiple of P;.

Let's write P,P; = N +y.

** P, = P;. The number P, P; in the second row is the smallest multiple of P, (it turns
out that y < P,). Hence, P,P; < P, P,.

**% P, — P,. The number P, P; in the second row is the smallest multiple of P; (it turns
out that y < P3)..

(P,P; = N + y) multiply by P; and get P,P,P; = PN + P,y.Sincey < P,, y < P3,
then P,y < P;P, = P;y < N.
This means that the number F, = P, P,P; = P;N + P,y is in the row under the number

(P; + 1). According to property 1, the number P; is good, which means that the
number F, = P, P,P5 is not problematic.

OpPTION G. If P, — P, = P; — P;, then theoretically it turns out:
* P; = P,. The number P; P, in the second row is the smallest multiple of P;.

** P, — P3. The number P, P; in the second row is the smallest multiple of P,. Hence,
P,P; < P, P,.

We will write P,P; = N + y and multiply by P;. y < P, = P;y < N. This means that
the number F, = P;P,P; = PN + P,y is in the row under the number (P; + 1).

According to property 1, the number P; is good, which means that the number F, =
P, P, P is not problematic.



AUXILIARY LEMMA 3.3 is proven.
LEMMA 3 is proven.
THEOREM is proven.

COROLLARY 1. SOLUTION OF THE 3RD LANDAU PROBLEM (Legendre's conjecture).
For any natural N between N2 and (N + 1)? there is at least one prime number.

It is obvious that Legendre's hypothesis is a special case of the prime number
distribution theorem, and for any natural N between N2 and (N + 1)? there will be at
least two primes, since there are two complete rows in the specified interval (at least
one prime number in each) — fable 1.

COROLLARY 2. BROCARD'S CONJECTURE. For any natural number n between p2 and
pZ.1 (where p, > 2 and p,;, are two consecutive primes), there are at least four
primes.

For any prime number p,, > 2, we can write as follows:
ppn=N-—-1landp,+2=N+1.

Pn+1 —Pn 2 2

Between p2 = (N —1)? and (p,, + 2)?> = (N + 1)? there are four complete lines
(table 6), each of which has at least one prime number. We take into account that the
minimum difference between consecutive (starting from 3) primes is 2, and therefore
we chose p,+1 = N + 1. So, the greater the difference between consecutive primes,
the more primes there are between their squares.

table 6
(N —2)N
(N —1)? (N — 1N
(N—1)N +1 N?2
N?+1 (N +1)N
(N+1N+1 (N + 2)N
(N + 1)?




