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PROBLEM STATEMENT 

Let us write the set of natural numbers in the form of a table, where each row contains 

consecutive numbers (note: this article does not concern the “Sieve of Eratosthenes”). 

We will prove that each row of this table contains at least one prime number. 

table 1 

1 2 3,… � − 1 � � + 1 � + 2 � + 3, … 2� − 1 2� 2� + 1 2� + 2 2� + 3, … 3� − 1 3� 3� + 1 3� + 2 3� + 3, … 4� − 1 4� 

… … … … … 


� + 1 
� + 2 
� + 3, … �
 + 1�� − 1 �
 + 1�� 

… … … … … 

�� − 1�� + 1 �� − 1�� + 2 �� − 1�� + 3, … �
 − 1 �
 

�
 + 1 �
 + 2 �
 + 3, … �� + 1�� − 1 �� + 1�� �� + 1�� + 1 �� + 1�� + 2 �� + 1�� + 3, … �� + 2�� − 1 �� + 2�� 

�� + 2�� + 1 = �� + 1�
     

 

ABSTRACT 

This article proves that each row of the specified table contains at least one prime 

number. In the arbitrarily taken and first rows of the table, in parallel (simultaneously) 

we cross out the numbers that are multiples of the prime numbers of the set: 
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� = �2,3,5, … , �� – the set of all primes of the first row. 

At the same time, the number of deleted elements in the arbitrary and first rows of the 

table remains balanced (in an arbitrary line, no more numbers are crossed out than in 

the first line). 

 

In some rows of the table, the number of numbers is (before crossing out the numbers), 

multiples of some prime numbers (called critical numbers) of the set L={2,3,5,...,P} 

may exceed the corresponding number in the first row by one piece. Let's call these 

"extra" numbers problematic numbers. 

 

In any arbitrarily selected row, no more numbers are eliminated than in the first row. 

If necessary (theoretically), to preserve the balance of eliminated numbers, some 

problematic numbers may be left uneliminated. However, as shown in Lemma 3, 

problematic numbers ultimately disappear during the full elimination process. 

Moreover, the number 1 remains uneliminated in the first row. Therefore, at least one 

number remains uneliminated in each row of the table — a prime number. 

 

THEOREM 

For any natural numbers � ≥ 2 and �, where 1 ≤ � ≤ � + 2, there exists at least 

one prime number in the interval [�� − 1�� + 1, ��]. 
In other words, every full row in the above-described table contains at least one 

prime number. 

PROOF OF THE THEOREM 

It is evident that the first row of the table always contains at least one prime number. 

According to Bertrand’s Postulate, for any natural number � ≥ 2, there exists a 

prime number in the interval [�, 2�]. Therefore, the second row of the table (for � ≥ 2) also contains at least one prime number. 

Now we will prove that starting from the third row and onward, every arbitrarily 

selected row in the table contains at least one prime number. 

 

NOTATION 

Let's use ��
� = ���� and ��
� to denote the number of multiples of 
 ≤ � in the 

first row of the table before and after the start of the strikeout process, respectively. 

Similarly, using ��
� and  �
�, we denote the number of multiples of 
 ≤ � in a 

randomly selected row of the table before and after the start of strikeout, respectively. 

Then: ��
� = ��
� + ∆� ⇒ ��
� ≥ ��
�                                                                                          (1) 
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Lemma 1 

We prove that either ∆�= 0, or ∆�= 1. 

PROOF OF LEMMA 1 

Let us prove that ∆�< 2. 

Let the length of the first row (i.e., number of elements) be: � = �
 − 1� + %1 + %���� − 1& ∙ 
& + ( = ���� ∙ 
 + (                                         (2) 

Where: 0 ≤ ( ≤ 
 − 1                                                                                                           (3) 

Where: �
 − 1� is the number of elements not divisible by 
 at the start of the first row; ( is the number of all numbers (at the end of the first line) after the largest number, 

which is a multiple of 
 (( = 0 in the case of � ≡ 0�mod 
�). 

Assume the contrary: that there exists a row where ∆�≥ 2. Then its minimum length 

would be: � = .%���� + ∆�& − 1/ ∙ 
 + 1 = .%���� + 2& − 1/ ∙ 
 + 1 = ���� ∙ 
 + 
 + 1             (4) 

But using equations (3) and (4), we obtain a contradiction: ���� ∙ 
 + ( = ���� ∙ 
 + 
 + 1 ⇒ ( = 
 + 1  

It cannot be ∆�< 0, since the minimum values of ��
� and ��
� are ����. 

LEMMA 1 is proven. 

DEFINITIONS 

 A number is called a good number if ∆�= 0. 

 A number is called a critical number if ∆�= 1. 

 If ��
� = ��
� + 1 = ���� + 1, we say: the value of ��
� is "increased in favor 

of the number" ���� + 1 (let's write it this way ��
� → ���� + 1). 

 Similarly, if  �
� = ��
� + 1, we say: the value of  �
� is "increased in favor 

of the number" ��
� + 1 (let's write it this way  �
� → ��
� + 1). 

 If, in an arbitrarily selected row, ∆�= 1, then that row contains a number   (see 

(5), called a problematic number) divisible by 
 %���� + 1& = 
 ���� + 
 > �. 

2 = 3
 %���� + 1& =  3�4�
 = 3�4 %� �56� + 1& ≥ 3�� + 1�                    
 = �4 ,    � �56� + 1 = �
,    �4 → �
 ⇒ �4 → � �56� + 1 ⇒ �4�
 ≥ � + 1                 (5) 

�4, �
, 3 – are natural numbers 

 



4 

 

PROPERTY 1 

It is obvious that in the rows with indices �1, 
 + 1, 2
 + 1, … �, the value ∆�= 0 

remains constant. 

Corollary of  PROPERTY 1 

In all the specified rows of the table, 
 is a good number. 

 

LEMMA 2 

Let's assume that we have crossed out in the arbitrarily taken and in the first lines all 

the numbers that are multiples of the good prime 74 ∈ �, for which the following was 

true: ��74� = ��74�. 

Let us now analyze the number of remaining (i.e., not eliminated) numbers divisible 

by some other prime 79 ∈ � ∖ 74 for which initially: ��7;� = ��<;� + ∆<; = ��79� + ∆<;   
And after crossing out the numbers that are multiples of 74 ∈ �, we denote the 

difference  �79� − ��79� as =<>:  �79� − ��79� = =<>                                    (see (8)) 

At the same time, it is obvious that in the first and randomly selected rows there will 

be no numbers that are multiples of 7479 . 
Let's prove that: =<> ≤ ∆<>   
PROOF OF LEMMA 2 

According to (1), for a prime number 
 = 79 and for a composite number 
 = 7479 
we write: ��79� = ��79� + ∆<>                                                                                                     (6) ��7479� ≥ ��7479�                                                                                                        (7)  �79� − ��79� = =<>                                                                                                     (8) 

Subtract (7) from (6): ��79� − ��7479� ≤ ��79� − ��7479� + ∆<>                                                                   (9) 

But from definitions: ��79� − ��7479� =  �79�  ��79� − ��7479� = ��79�  

We substitute the last two equalities in (9) and get  �79� ≤ ��79� + ∆<>                                                                                                     (10) 

Compare (8) and (10), we conclude: 
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=<> ≤ ∆<>                                                                                                                    (11) 

LEMMA 2 is proven. 

Corollary 1 of  LEMMA 2 

Good numbers do not become critical during the process of crossing out. 

Corollary 2 of  LEMMA 2 

Suppose that in an arbitrary row ∆�= 1 (that is 
 → ���� + 1). Moreover, if ���� + 1 

(or one of its multipliers) is a good number, then after crossing out the numbers that 

are multiples of the good ���� + 1 (or its good divisor), the number 
 also becomes 

good.  

For example, for � = 13 in the third row of the table (table 2) ∆?= 1. In other words, 

in the first row of such a table, four numbers 3, 6, 9, 12 are multiples of 3, and in the 

third row there are five such numbers 27, 30, 33, 36, 39. That is, 3 → �4?? � + 1 = 5. 

The number 5 in this line is a good number, that is, ∆C= 0. In the third line, we cross 

out two numbers (30, 35) that are multiples of the good number 5. In parallel, and in 

the first line, we cross out two numbers (5, 10) that are multiples of the good number 5. In the new state of the third row of table 2, the number of numbers (27, 33, 36, 39) 

that are multiples of the number 3 has become the same as in the first row (3, 6, 9, 12) 

– four. That is, in the beginning there was ��3� = �4?? � + 1 = ��3� + 1 = 4 + 1 = 5. 

And after crossing out the numbers that are multiples of 5, for the number 3 it turned 

out =? = 0 ⇒  �3� = ��3� + =? = ��3� + 0 = 4. 

table 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 

 

Corollary 3 of  LEMMA 2 

At any stage of deletion, if ∆<= 0 (or =< = 0), then in an arbitrary row of table 1 we 

will delete no more numbers of multiples of a good 7 (if any) than in the first row of 

the table of multiples of 7. In this case, there will not be a single multiple of 7 left in 

an arbitrary line. 

 

LEMMA 3 

If ∆<= 1, then a critical prime 7 exists within an arbitrary string, and a problematic 

number   may also be present (see (5)): 
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 = 3
 %���� + 1& =  3�4�
 = 3�4 %� �56� + 1& ≥ 3�� + 1�  

We aim to prove that, after removing all numbers (based on previous results)  divisible 

by the primes in the set � = �2,3,5, … , �� no problematic number   remains in the 

table. 

PROOF OF LEMMA 3 

Proof of the contrary. Suppose that after the elimination process, some problematic   

numbers remain not crossed out in a randomly selected row. Let's make a table of all 

possible such problematic numbers. Here ��4, �
, �?, �E� are the set of all possible 

critical numbers (table 3): 

table 3 

Auxiliary lemma 3.1 Auxiliary lemma 3.2 Auxiliary lemma 3.3 Auxiliary lemma 3.4  4 = �4�
�?�E  
 = �4?  ? = �4�

  E = �4�
�? 

 

AUXILIARY LEMMA 3.1 

If the problematic number is of the form  4 = �4�
�?�E, according to (5) for F�G , �H ,  �I , �JK = ��4, �
, �?, �E� run inequality: �G ∙ �H ≥ � + 1,   �I ∙ �J ≥ � + 1. 

Therefore,  4 = �4�
�?�E ≥ �� + 1�
                                                                                        (12) 

(12) contradicts the assumption, since the number �� + 1�
 is outside the table. 

AUXILIARY LEMMA 3.1 is proven. 

AUXILIARY LEMMA 3.2 

If the problematic number is of the form  
 = �4?, then one option is possible: �4 → �4  

Therefore:  �4 → �4 ⇒ �4 = � �56� + 1 ⇒ �4 ∙ %� �56� + 1& = �4
 ⇒ � + 1 ≤ �4
 < 2�  

In the second row of the table, the number �4
 is the smallest multiple of �4. Let's write �4
 − �4 < �, and continue as follows: �4
 − � = L < �4 ⇒ L ≤ �4 − 1 ⇒ �4L ≤ �4
 − �4 < � ⇒ �4L < �  

Therefore, �4
 − � = L ⇒ �4? − �4� = �4L ⇒ �4? = �4� + �4L                                                (13) 

(13) means (since �4L < �) that the number  
 = �4? = �4� + �4L is in the ��4 + 1�th 

row of the table 1. According to property 1, the number �4 is good, which means that 

the number  
 = �4? is not problematic. 

AUXILIARY LEMMA 3.2 is proven. 
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AUXILIARY LEMMA 3.3 

If the problematic number has the form  ? = �4�

, then there are four possible 

options (table 4): 

table 3 

OPTION A OPTION B OPTION C OPTION D �4 → �
 → �4 �4 → �
 → �4 �4 → �
 → �
 �4 → �
 → �
 �4 > �
 �4 < �
 �4 > �
 �4 < �
 

 

OPTION A. Here, the number �4�
 is the smallest number in the second row of the 

table, a multiple of both �4 and �
. So �

 < �. Next, L < �
 < �4 we write �4�
 =� + L. Multiply the latter by �
 and we get:  ? = �4�

 = �
� + �
L  

Since L < �
 then �
L < �. This means that the number  ? = �4�

 = �
� + �
L is 

in the row under the number ��
 + 1�. According to property 1, the number �
 is good, 

which means that the number  ? = �4�

 is not problematic. 

OPTION B. Here, the number �4�
 is the smallest number in the second row of the 

table, a multiple of both �4 and �
. Next, L < �4 < �
 we write �4�
 = � + L. 

Multiply the latter by �
 and we get:  ? = �4�

 = �
� + �
L  

Since L < �4 then �
L < �. This means that the number  ? = �4�

 = �
� + �
L is 

in the row under the number ��
 + 1�. According to property 1, the number �
 is good, 

which means that the number  ? = �4�

 is not problematic. 

OPTION C. Here, the number �

 is the smallest number in the second row of the table 

1, a multiple of �
. Let's write �

 = � + L. Multiply the latter by �4 and we get: �4�

 = �4� + �4L  

Taking into account L < �
 < �4 we obtain �4L < �. This means that the number  ? = �4�

 = �4� + �4L is in the row under the number ��4 + 1�. According to 

property 1, the number �4 is good, which means that the number  ? = �4�

 is not 

problematic. 

OPTION D. Here it turns out that the numbers �4�
 and �

 are simultaneously the 

smallest numbers in the second row that are multiples of �
. And this is not possible 

because of �4 ≠ �
. 

AUXILIARY LEMMA 3.3 is proven. 

AUXILIARY LEMMA 3.4 

If the problematic number has the form  E = �4�
�?, then there are three possible 

options (table 5): 
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table 5 

OPTION D OPTION F OPTION G �4 → �
 → �? → �4 �4 → �
 → �? → �
 �4 → �
 → �? → �? 

 

OPTION E. If �4 → �
 → �? → �4, then theoretically it turns out: 

* �4 → �
. The number �4�
 in the second row is the smallest multiple of �4. 

**  �? → �4. The number �?�4 in the second row is the smallest multiple of �?. It turns 

out �4�
 < �?�4. 

***  �
 → �?. The number �
�? in the second row is the smallest multiple of �
. It 

turns out �
�? < �4�
. 

The result is a contradiction: 

N�
�? < �4�
 ⇒ �? < �4�
�? > �?�4 ⇒ �
 > �4�4�
 < �?�4 ⇒ �
 < �?
O�? < �4 < �
 ⇒ �? < �
                              �
 < �?   

 E = �4�
�? is not problematic. 

OPTION F. If �4 → �
 → �? → �
, then theoretically it turns out: 

*  �4 → �
. The number �4�
 in the second row is the smallest multiple of �4. 

Let's write �
�? = � + L. 

**  �
 → �?. The number �
�? in the second row is the smallest multiple of �
 (it turns 

out that L < �
). Hence, �
�? < �4�
. 

*** �? → �
. The number �
�? in the second row is the smallest multiple of �? (it turns 

out that L < �?).. ��
�? = � + L� multiply by �4 and get �4�
�? = �4� + �4L. Since L < �
, L < �?, 

then �4L < �4�
 ⇒ �4L < �.  

This means that the number  E = �4�
�? = �4� + �4L is in the row under the number ��4 + 1�. According to property 1, the number �4 is good, which means that the 

number  E = �4�
�? is not problematic. 

OPTION G. If  �4 → �
 → �? → �?, then theoretically it turns out: 

* �4 → �
. The number �4�
 in the second row is the smallest multiple of �4. 

** �
 → �?. The number �
�? in the second row is the smallest multiple of �
. Hence, �
�? < �4�
. 

We will write �
�? = � + L and multiply by �4. L < �
 ⇒ �4L < �. This means that 

the number  E = �4�
�? = �4� + �4L is in the row under the number ��4 + 1�. 

According to property 1, the number �4 is good, which means that the number  E =�4�
�? is not problematic. 
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AUXILIARY LEMMA 3.3 is proven. 

LEMMA 3 is proven. 

THEOREM is proven. 

 

COROLLARY 1. SOLUTION OF THE 3RD LANDAU PROBLEM (Legendre's conjecture). 

For any natural � between �
 and �� + 1�
 there is at least one prime number.  

It is obvious that Legendre's hypothesis is a special case of the prime number 

distribution theorem, and for any natural � between �
 and �� + 1�
 there will be at 

least two primes, since there are two complete rows in the specified interval (at least 

one prime number in each) – table 1. 

COROLLARY 2. BROCARD'S CONJECTURE. For any natural number P between 7Q
 and 7QR4
  (where 7Q > 2 and 7QR4 are two consecutive primes), there are at least four 

primes. 

For any prime number 7Q > 2, we can write as follows:  7Q = � − 1 and 7Q + 2 = � + 1. 

 7QR4 − 7Q ≥ 2 

Between 7Q
 = �� − 1�
 and �7Q + 2�
 = �� + 1�
 there are four complete lines 

(table 6), each of which has at least one prime number. We take into account that the 

minimum difference between consecutive (starting from 3) primes is 2, and therefore 

we chose 7QR4 = � + 1. So, the greater the difference between consecutive primes, 

the more primes there are between their squares. 

table 6 

 … �� − 2�� �� − 1�
 … �� − 1�� �� − 1�� + 1 … �
 �
 + 1 … �� + 1�� �� + 1�� + 1 … �� + 2�� �� + 1�
 …  

 

 


