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ABSTRACT. The article "Theorem on the distribution of prime numbers" examines 

the behavior and causes of the appearance of prime numbers. The relevance of the 

topic lies in the fact that the consequences of the "Theorem on the distribution of 

prime numbers" are solutions to such open problems as Legendre's conjecture and 

Brocard's conjecture. 

NOTE. In this article, we are not talking about the «sieve of Eratosthenes» 
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PROBLEM STATEMENT. We will write the set of natural numbers [1, �� + 2��] in  

the form of a table, with � consecutive numbers in each row as follows (In this 

article, we are not talking about the «sieve of Eratosthenes»): 

                                                                                                                 Таблица  

1 2 3,… � − 1 � � + 1 � + 2 � + 3, … 2� − 1 2� 2� + 1 2� + 2 2� + 3, … 3� − 1 3� 3� + 1 3� + 2 3� + 3, … 4� − 1 4� 

… … … … … �� + 1 �� + 2 �� + 3, … �� + 1�� − 1 �� + 1�� 

… … … … … �� − 1�� + 1 �� − 1�� + 2 �� − 1�� + 3, … �� − 1 �� �� + 1 �� + 2 �� + 3, … �� + 1�� − 1 �� + 1�� �� + 1�� + 1 �� + 1�� + 2 �� + 1�� + 3, … �� + 2�� − 1 �� + 2�� �� + 2�� + 1 = �� + 1��     

 



THEOREM. For any natural numbers � and �, where 1 ≤ � ≤ � + 2, there is at least 

one prime number in the interval [�� + 1, �� + 1��]. 
IN OTHER WORDS: there is at least one prime number in each row of the above table. 

In the first and arbitrarily taken rows (except for the second row of the table) of the 

table, in parallel (simultaneously) we will cross out all the numbers that are multiples 

of each of the primes of the set �. After crossing out, we compare the number of 

crossed out numbers in the first and in randomly selected rows of the table. As a 

result, we prove that in an arbitrarily taken row of the table we cross out no more 

numbers than in the first row of the table. We do not cross out the crossed-out 

numbers again. After all the strikeouts in the first line, the «unit» remains uncrossed. 

Therefore, at least one number in each row of the table will remain uncrossed. This 

number is a prime number because it does not have a prime divisor in the set �.  

NOTE. At the end of the deletion, in the first line, in addition to «unit», some other 

numbers may remain uncrossed. This does not contradict the presence of a «unit» in 

the first line and, therefore, does not contradict the fact that there is at least one prime 

number in an arbitrarily taken line.   

ACCORDING TO BERTRAND'S POSTULATE: for any natural � ≥ 2, there is a prime 

number in the interval [�, 2�]. Therefore, in this paper, we do not analyze the 

second line of the table for the presence of primes in it (we do not prove it). 

CHRONOLOGY OF THE PROOF: 

– Lemma 1; 

– Lemma 2; 

– Lemma 3; 

– Continuation of Lemma 3; 

– The behavior of all possible «problem» numbers  �� = ��������� + 1�, which do 

not have «polite» divisors (�� is the smallest «critical» number); 

– Consequence 1; 

– Consequence. 



PART I 

(designations) � = �2,3,5, … , ��� –  the set of all primes in the first row of the table. ��, �� – prime numbers,  ��, ��! ∈ �. � – natural number, � ≤ �. 

An arbitrary string – any row of the table, except the first and second rows of the 

table. 

The order of striking out (striking out) – crossing out (simultaneously) all the 

numbers in the first and arbitrarily selected rows of the table, multiples of some 

number, or some set of numbers. ���� – the number of numbers that are multiples of the number � ∈ ℕ in the first 

row of the table before the start of strikeout. $��� – the number of numbers that are multiples of the number � in an arbitrary 

row of the table before the start of strikeout. 

 A «polite» number – if $��� = ����, then we denote the number m as a «polite» 

number. Primes such as ��, studied in Lemma 2, are also «polite». 

Set of «polite»  numbers – if $�%� = ��%�, then the set % ≠ ∅  is denoted as the 

set of «polite» numbers 

The «critical» number – if $��� = ���� + 1, then we denote the number � as a 

«critical» number. ��%� – the number of uncrossed numbers that are multiples of the number � ∩ % =∅ in the first row of the table after crossing out all the numbers that are multiples of 

all the numbers of some set % ≠ ∅. )�%� –  the number of uncrossed numbers that are multiples of the number � ∩% = ∅   in an arbitrarily taken row of the table after crossing out the numbers that 

are multiples of all the numbers in the set % ≠ ∅. 

A change in favor of the theorem – if, after crossing out numbers that are multiples 

of the terms of some set % ≠ ∅, for the number � ∩ % = ∅, such a change occurs 

as )��� − ���� ≤ $��� − ����, then such a change is denoted by a change "in 

favor of the theorem". 



«Increasing» the number in favor of another number  – if $��� = ���� + 1, 

then we'll denote it like this: the number � is «increased» in favor of ���� + 1 =*+,- + 1, or so: � → ���� + 1;       � → *+,- + 1. Such an «increase» can last a long 

time: � → *+,- + 1 → 1 +*23-4�5 + 1 → 6 +
7 2*23-89:4�; + 1 →, … 

The «problematic» number is relative to < – if � → ���� + 1 occurred in an 

arbitrarily taken row of the table, then the number � = ������� + 1� =�� =*+,- + 1> appears in such a row, which we denote as a «problem» number 

relative to �. Here is � ∈ ℕ.  

«Indicators of the number»: ����, $���, ����, )��� – let's denote it as 

«exponents of the number �».  

PART II 

(transformation of table 1) 

Let's transform Table 1 and get a different interpretation of it. For the entire set of 

primes � = �2,3,5, … , ���, we write down an analogue of an arbitrarily taken row of 

Table 1: 

⎩⎨
⎧$�2� = ��2� + ∆�     $�3� = ��3� + ∆C     … … … … … … … …     $D��E = �D��E + ∆FG

                                                                                            (1) 

PART III 

(properties) 

Property 1. If there is no such number in an arbitrarily taken row as � = ����� (in 

this case, there cannot be such a number in the first row of the table either), then 

striking out numbers that are multiples of �� does not affect the «indicators of the 

number ��». 

Property 2. For any number �, the equality ���� = *+,- is true.  

Property 3. � *+,- is the largest number in the first row of the table, a multiple of �.  



Property 4. If there is an «increase» in the number �, then this happens only in 

favor of the number *+,- + 1. That is, � → ���� + 1 = *+,- + 1. 

Property 5. As a consequence of property 4, the number � =*+,- + 1> is in the 

second row of the table, and is the smallest multiple of � in the second row. 

Therefore, � =*+,- + 1> > � is executed. 

Property 6. The difference between the two «problematic» numbers is greater than 

the number �: ��� =*+,- + 1> − ��� =*+,- + 1> = �C� =*+,- + 1> > �. 

Therefore, there can be at most one «problematic» number in one row of the table 

relative to one number (there may not be any). 

Property 7.1. The fact � → ���� + 1 = *+,- + 1 necessarily leads to the number 

� = �� =*+,- + 1> appearing in an arbitrarily taken string, which may turn out to be 

«problematic». 

Property 7.2. The presence of the number � = �� =*+,- + 1> in an arbitrarily taken 

string does not mean that in this string � → ���� + 1 = *+,- + 1. 

Property 8. If � ≡ 0�mod��, then $��� = ����. In other words, when crossing 

out numbers that are multiples of �, we will cross out no more numbers in an 

arbitrarily taken row than in the first row of the table. 

Property 9. $��N + 1 � = ���� is always true. In other words, when crossing out 

numbers that are multiples of the number � in the row numbered �N + 1, we will 

cross out no more numbers than in the first row of the table. The first numbers of 

such strings are numbers in the form �N� + 1. Here N ∈ ℕ. 

 

PART IV 

 (lemmas) 

LEMMA 1. For the value $��� = ���� + ∆,, only one of two conditions is met, or ∆,= 0, or ∆,= 1. 



Proof of  Lemma 1.  

Obviously, ���� = *+,-. Let's write the first row of the table as follows: 1,2, … , � − 1OPPPQPPPR,S� , �, … ,2�, … , � ∙ ����OPPPPPPQPPPPPPR,�U�,�S��4� , … , �VW   

Here 0 ≤ X ≤ � − 1. 

Obviously, in an arbitrarily taken row of the table, to achieve the value $��� = *+,-, 

there may be enough consecutive natural numbers in the amount of ������ − 1� +1 pieces. The presence of the remaining numbers in the amount of � − 1 + X pieces 

can lead to an «increase» in $��� by only one unit, and $��� = *+,- + 1. Due to the 

condition � − 1 + X ≤ � − 1 + � − 1 = 2� − 2, the option $��� = *+,- + 2 is 

not possible for the value $���.  

Lemma 1 is proved. 

As a consequence of Lemma 1, the inequality $��� ≥ ���� holds. 

*** 

LEMMA 2. Suppose that for a «critical» number �� in an arbitrary row of the table, �� → �� occurred, that is, $���� = �� = ����� + 1 = *+Y9- + 1. If �� is a «polite» 

number, then after crossing out the numbers that are multiples of the «polite» number ��, the number � = ����� = ��� =*+Y9- + 1> (the «problematic» number relative to ��) 

is crossed out in this line, and as a result the number ��1 becomes «polite». 

Proof of  Lemma 2. The essence of the proof is that the numbers of multiples of �� 

and/or �� in the first and randomly selected rows are equal. 

For the first row of the table: ����� + ����� − �������.  

Let's substitute ����� = * +,9- ,  ����� = *+YZ- ,   ������� = * +Y9YZ- = 0   (according to property 5). 

The total sum of all the numbers that are multiples of �� and �� in the first line is as 

follows: 



����� + ����� − ������� = *+Y9- + *+YZ-                                                                       (2) 

Next, for an arbitrary row of the table: $���� + $���� − $������.  

Let's substitute $���� = *+Y9- + 1,  $���� = ����� = *+YZ-   и  $������ = * +Y9YZ- + ∆Y9YZ.      

* +Y9YZ- = 0  and, since exactly �� → ��, then ∆Y9YZ= 1. 

$���� + $���� − $������ = =*+Y9- + 1> + *+YZ- − =* +Y9YZ- + ∆Y9YZ>  

$���� + $���� − $������ = =*+Y9- + 1> + *+YZ- − �0 + 1�  

$���� + $���� − $������ = *+Y9- + 1 + *+YZ- − 1  

The total sum of all the numbers that are multiples of �� and �� in an arbitrary string 

will be as follows: $���� + $���� − $������ = *+Y9- + *+YZ-                                                                        (3) 

Taking into account (2) and (3) ����� + ����� − ������� = $���� + $���� − $������  

Lemma 2 is proved. 

*** 

 The behavior of the set of primes [ = �\, ], ^, … , _`� 

Let's write the set � = �2,3,5, … , ��� in a different order: ���, ��, … , �a , … , ��� = �                                                                                             (4) 

Here ���, ��, … , �a� = �a is the set of all «polite» primes, including those primes that 

became «polite» under Lemma 2, and �a ∈ �. 

We transform the system (1) 



⎩⎪⎪
⎨
⎪⎪⎧

$���� = �����                      $���� = �����                      … … … … … … … …              $D�aE = �D�aE                      $D�a4�E = �D�a4�E + ∆Yc89$���� = ����� + ∆Yd              
                                                                                      (5) 

Let's study the behavior of two different arbitrarily taken primes �� and �e. Here �� 

is a «polite» number, �e is any prime number, and  ��, �e! ∈ �. 

We cross out the numbers that are multiples of ��. Since �� is a «polite» number, no 

more numbers were crossed out in an arbitrary row of the table than in the first row 

of the table. 

LEMMA 3. After crossing out the numbers that are multiples of the «polite»  ��, the 

parameters of �e change in favor of the theorem in an arbitrarily taken row of the 

table. 

Proof of  Lemma 3. 

Before the start of crossing out numbers that are multiples of ��, it was like this: $���� − ����� = 0 and $��e� − ���e� = ∆Yf ⇒ $��e� = ���e� + ∆Yf                    (6)                                                            

We crossed out in the first and randomly taken lines all the numbers that are 

multiples of the prime number ��. It turns out that in an arbitrary line we crossed out 

all the numbers that are multiples of ���e (if there are such numbers). As a 

consequence of Lemma 1, we know that $����e� ≥ �����e�                                                                                                    (7)  

From (6) we subtract (7) $��e� − $����e� ≤ ���e� + ∆Yf − �����e�                                                                  (8) 

In (8) we will replace $��e� − $����e� = )��e�  и  ���e� + ∆Yf − �����e� = ���e� + ∆Yf 

We will get )��e� ≤ ���e� + ∆Yf ⇒ )��e� − ���e� ≤ ∆Yf                                                          (9) 

Taking into account (6) and (9), it turns out that after crossing out numbers that are 

multiples of the prime number ��, the parameters of the prime number �e changed 



in favor of the theorem. That is: 

It was:  $��e� − ���e� = ∆Yf  

Become:  )��e� − ���e� ≤ ∆Yf                                                                                        (10) 

Lemma 3 is proved. 

CONTINUATION OF LEMMA 3 

In the continuation of Lemma 3, we analyze the possibility of continuing to strike 

out numbers that are multiples of all the «polite» primes of the set ���, ��, … , �a� = �a 

in favor of the theorem.   

We will replace hYf ≤ ∆Yf and inequality (10) are replaced by equality, and we will 

get: )��e� − ���e� = hYf  

Taking into account the arbitrariness of �e, for the entire set � we write 

⎩⎪⎪
⎨
⎪⎪⎧

)���� − ����� = hYZ ≤ ∆YZ               )��C� − ���C� = hYi ≤ ∆Yi               … … … … … … … … … … … … … … . . .)D�aE − �D�aE = hYc ≤ ∆Yc                )D�a4�E − �D�a4�E = hYc89 ≤ ∆Yc89… … … … … … … … … … … … … … . . .)���� − ����� = hYd ≤ ∆Ycd              
                                                                                           (11) 

Here we note separately (12) 

⎩⎪⎪
⎨
⎪⎪⎧

hYZ ≤ ∆YZ       hYi ≤ ∆Yi      … … … … … . .hYc89 ≤ ∆Yc89hYc8Z ≤ ∆Yc8Z… … … … … . .hYd ≤ ∆Yd       
                                                                                                                (12) 

For the «polite» prime number �e (in other words, for the set of «polite» primes ���, ��, … , �a� = �a ∈ �)  ∆Yf= 0 is true 

We take into account the latter, and write it down: 



⎩⎪⎪
⎨
⎪⎪⎧

)���� ≤ �����                                    )��C� ≤ ���C�                                    … … … … … …                                      )D�aE ≤ �D�aE                                     )D�a4�E − �D�a4�E = hYc89 ≤ ∆Yc89… … … … … … … … … … … … … … . . .)���� − ����� = hYd ≤ ∆Ycd              
                                                                     (13) 

Note that after crossing out the numbers that are multiples of the «polite» ��, there 

were changes in favor of the theorem in an arbitrarily taken line. This is obvious 

when comparing the two systems (1) and (11), also separately according to the 

system of inequalities (12). 

In the continuation of (13), we will highlight the «polite» part: 

⎩⎨
⎧)���� ≤ �����)��C� ≤ ���C�… … … … … …)D�aE ≤ �D�aE                                                                                                      (14) 

In the arbitrarily taken and first lines (14), let's try to cross out the numbers that are 

multiples of the next «polite» (if any) prime number (let it be ��) of the set ���, ��, … , �a� = �a. 

When we crossed out numbers that are multiples of �� (lemma 3), the following could 

be: 

 In an arbitrarily taken string, there was a number that was a multiple of �����C. 

 In the process of crossing out numbers that are multiples of ��, the number ℎ� = �������C was also crossed out in an arbitrary line.  

 Let's assume that by the beginning of crossing out numbers that are multiples 

of ��, in the first and randomly taken rows of the table there was only one 

number each, multiples of ���C, – this is the number ℎ� = �������C in an 

arbitrary line, and the number ℎ� = �����C in the first line. Here ���, ��� = 1, 

in other words, there are no multiples of �����C in the first line. 

 Let's analyze two lines from (14) 

           l)���� ≤ �����)��C� ≤ ���C�… … … … … … .                                                                                            (15) 



 After crossing out the numbers that are multiples of ��, the first inequality 

disappears in (15), and the following expression with an undefined (as yet) 

sign remains.. 

           )��C� ? ? ?nop �pqrU�p�sr t�up ���C�                                                                       (16) 

 Obviously, after crossing out the numbers that are multiples of ��, changes 

will occur in the second inequality (15): Instead of ���C� another ���C� − 1 

will appear (since, unlike an arbitrary string, one number ℎ� = �����C is 

crossed out in the first line); and )��C� will remain unchanged (since, unlike 

the first line, not a single number is crossed out in an arbitrarily taken line). 

           )��C� ? ? ?nop �pqrU�p�sr t�up ���C� − 1                                                                (17) 

 (!!!) The number ℎ� = �������C is taken into account in three places (5): and 

in $����, and in $����, and in $��C�. This means that after crossing out the 

number ℎ� = �������C, we had to reflect this in (13), hence, in (14) and (15). 

In this case, instead of (15), we should have written (18) 

          l)���� − 1 ≤ �����        )��C� − 1 ≤ ���C� − 1… … … … … … … . . … … .                                                                             (18) 

 (!!!) Obviously, the presence of numbers such as ℎC = �C�o�v ∙ … ∙ �w in 

arbitrarily taken rows of the table «creates an opportunity» for the appearance 

of new prime numbers in the same row. Here �o, �v , … , �w are a set of prime 

numbers,   �o, �v , … , �w! ∈ � 

 Here ��, ��, �C is an arbitrarily taken triple of «polite» primes from the set �. 

CONCLUSION ON LEMMA 3 (TAKING INTO ACCOUNT LEMMA 2): После 

вычеркивания всех чисел, кратных всем «вежливым» простым числам 

множества � в произвольно взятой строке таблицы вычеркиваем не больше 

чисел, чем в первой строке таблицы. 

 

 

 



PART V 

(analysis of all kinds of «problematic» numbers) 

We will illustrate the first two lines of the table with the help of drawings. 

Suppose that at the next stage of crossing out in the table we encountered the first 

«problem» number, one of the prime divisors of which is the «critical» number – 

that is, the smallest «critical» prime number. Let this smallest «critical» prime 

number be ��. In other words, in an arbitrarily taken row there is a «problematic» 

number with the smallest (across the entire table) «critical» prime divisor ��.  

 

THE BEHAVIOR OF ALL POSSIBLE «PROBLEMATIC» NUMBERS 

xy = z_{�|�_{� + {�, 

WHICH DO NOT HAVE «POLITE» DIVISORS AND _{ 

IS THE SMALLEST «CRITICAL» NUMBER IN THE ENTIRE TABLE 

In the proof of Lemma 2, we studied the behavior of numbers such as �� = ����� = ��� =* +F9- + 1>, where �� is a «critical» number, and «increased» in 

favor of the «polite» number ��. As a result, �� becomes «polite» (Lemma 2). 

Now suppose that in an arbitrarily taken string there is a «problem» number �� = ����� = ��������� + 1�, where the numbers �� and ����� + 1 are both 

different «critical» primes. That is, �� ≠ ����� + 1. 

Option 1. Suppose that in an arbitrary row of the table, the smallest «critical» 

number �� is «increased» in favor of the prime number �� = ����� + 1 ==* +F9- + 1>. At the same time, the number ����� + 1 is a «critical» prime number 



(meaning �� > ��), and is «increased» in favor of the prime number ��, that is =* +U�F9�4�- + 1> = ��. A «problematic» number �� = ����� = ��������� + 1� 

appears in an arbitrarily taken row of the table. 

The first two rows of the table are presented as in Figure 1. Obviously, if � = 1, then 

the number �� = ���� = �� =* +F9- + 1> is in the second row of the table. If � > 1, 

and has a «polite» divisor (let it be }), then the «problematic» number �� is crossed 

out when we cross out numbers that are multiples of the «polite» }.  

Consider the «problem» number  �C = �����, where �� and �� are both «critical» 

numbers, � > 1 and does not have a «polite» prime divisor. That is, all prime 

divisors of the number � are «critical». Given that �� is the smallest «critical» prime 

number, then �� > ��. There cannot be � = �C�~, where �C and �~ are «critical» 

primes, and �C «increases» in favor of �~ (or vice versa). Figure 1 shows that the 

number ���� = �� =* +F9- + 1> and the number �C�~ = �C =* +Fi- + 1> are both in the 

second row of the table. The conditions ���� ≥ � + 1 and �C�~ ≥ � + 1 are 

satisfied. It turns out  �C ≥ �� + 1��. This means that the number �C = �����C�~ is 

outside the table.  

Option 2. Next, consider the options if the «increase» of the smallest «critical» 

number �� continues like this: �� → �� → ⋯ → �a → ⋯ → �p. And the «problem» 

number will be like this: �~ = ���� ∙ … ∙ �a ∙ … ∙ �p. There are no «polite» numbers 

among the natural divisors of the «problematic» number �~. This means that the 

«critical» number �p is also «increased». There are two possible options here: or �� → ��, �p → �a, or �� → ��, �p → ��. Here � = 2, … , � − 1, and � ≥ 4. 

 

Figure 2 shows that regardless of the fact that ���� > �p�a or �p�a > ����, the 

conditions ���� ≥ � + 1 and �p�a ≥ � + 1 are met. Means, �~ ≥ �� + 1��. 



Option 3. Consider the variant �� = �����C, where either �� → �� → �C → ��, or �� → �� → �C → ��.  

Figure 3 shows the following contradiction. According to property 5 in the second 

row, the number ���� is the smallest number that is a multiple of the number �� 

(since �� → ��), just as the number ���C is the smallest number in the second row 

that is a multiple of the number ��. However, these two conditions are contradicted 

by the location of the numbers �C�� (for �C → ��) and �C�� (for �C → ��). 

 

Option 4. Let's consider the case when there is a «problem» number �� = ����� in 

an arbitrarily taken string, where �� → �� and �� → ��.  

There are two possible options here. Either �� > ��, or �� > ��.  

If �� > ��, then in Figure 4 the numbers ���� and ���� will swap places, and this 

contradicts property 9 (for ��). Now let's look at the option when �� > ��. 

 

Let's write it down ���� = � + � ��FZ�F9������ ����� = ���� + �� = ��� + ���. Since 

the number ���� in the second row is the smallest multiple of �� (property 5), then ��� < � (for comparison, we take into account ����� − 1� < �). Therefore, the 

number �� = ����� = ��� + ��� is in the row numbered �� + 1. Given property 9, 

the number �� is «polite», and the number �� = ����� is not «problematic». 

Option 5. Let's consider the case when there is a «problem» number �� = ����� in 

an arbitrarily taken string, where �� → �� and �� → ��. 



 

Let's write it down (Figure 5) 

���� = � + � ��F9 и ��FZ��������� ����� = ���� + �� = ��� + ���  

Since the number ���� in the second line is the smallest number that is 

simultaneously a multiple of �� and �� (property 5), then ��� < �. Therefore, the 

number �� = ��� + ��� is in the row numbered �� + 1. Given property 9, the 

number �� is «polite», and the number �� = ����� is not «problematic». 

 Option 6. Let's consider the case when there is a «problem» number �� = ��� in an 

arbitrarily taken string, where �� → ��. Obviously, � = 3. Otherwise (Figure 6), 

 

either �� = ��~ ≥ �� + 1�� (the number is outside the table), or the number �� = ��� 

is in the second row. So �� = ��C. Let's write down 

���� = � + � ��F9��� ��C = ���� + �� = ��� + ���  

Since the number ���� in the second row is the smallest multiple of �� (property 5), 

then ��� < �.  Therefore, the number �� = ��C = ��� + ��� is in the row numbered �� + 1. Given property 9, the number �� is «polite» and �� = ��C is not 

«problematic». 

The theorem on the distribution of prime numbers has been proved. 

CONSEQUENCE 1. LEGENDRE'S CONJECTURE (THE 3RD LANDAU PROBLEM). For any 

natural � between �� and �� + 1�� there is at least one prime number. 



It is obvious that Legendre's hypothesis is a special case of the theorem on the 

distribution of prime numbers, and for any natural � between �� and �� + 1�� there 

are at least two prime numbers, since there are two complete rows in the specified 

interval (at least one prime number in each). 

CONSEQUENCE 2. BROCARD'S CONJECTURE.  For any natural number n between �p� 

and �p4��  (where �p > 2 and �p4� are two consecutive primes), there are at least 

four primes. 

For any prime number �p > 2, we can write as follows:  �p = � − 1 and �p + 2 = � + 1   

The extreme numbers �p� and �p4��  both are composite numbers. Between �p� =�� − 1�� and ��p + 2�� = �� + 1�� there are four complete lines, each of which 

has at least one prime number. We take into account that the minimum difference 

between consecutive (starting from three) primes is 2, и поэтому выбрали �p =� − 1 и �p + 2 = � + 1. So, the greater the difference between consecutive primes, 

the more primes there are between their squares. 

… … … … �� − 2�� �� − 1�� �� − 1��+1 … �� − 1�� − 1 �� − 1�� �� − 1�� + 1 �� − 1�� + 2 … �� − 1 �� �� + 1 �� + 2 … �� + 1�� − 1 �� + 1�� �� + 1�� + 1 �� + 1�� + 2 … �� + 2�� − 1 �� + 2�� �� + 1�� … … … … 

 


