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The article " Prime Number Distribution Theorem" examines the behavior of 

primes in order to determine the causes and places of their infinite occurrence. The 

solutions of Legendre's conjecture and Brocard's conjecture are consequences of the 

"Prime Number Distribution Theorem". 
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1. Problem statement. We will write the set of natural numbers [1, �� + 2��] in  

the form of a table, with � consecutive numbers in each row as follows:  

                                                                                                                     Table 1  

1 2 3,… � − 1 � � + 1 � + 2 � + 3, … 2� − 1 2� 2� + 1 2� + 2 2� + 3, … 3� − 1 3� 3� + 1 3� + 2 3� + 3, … 4� − 1 4� 

… … … … … �� + 1 �� + 2 �� + 3, … �� + 1�� − 1 �� + 1�� 

… … … … … �� − 1�� + 1 �� − 1�� + 2 �� − 1�� + 3, … �� − 1 �� �� + 1 �� + 2 �� + 3, … �� + 1�� − 1 �� + 1�� �� + 1�� + 1 �� + 1�� + 2 �� + 1�� + 3, … �� + 2�� − 1 �� + 2�� �� + 2�� + 1 = �� + 1��     

 

We will prove a theorem on the distribution of primes. This theorem has several 

interpretations. Exactly: 

There is at least one prime number in each complete row of Table 1.  

Another version of the theorem: For any natural numbers N and L, where 1 ≤ � ≤� + 2, there is at least one prime number in the interval [�� + 1, �� + 1��]  
Chronology of the proof: Lemma 1; Auxiliary theorem; The behavior of all 

possible "problem" numbers �� = ��������� + 1�, which do not have "polite" 

divisors and �� is the smallest "critical" number; Consequence 1; Consequence 2. 
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Definitions. � – natural number, � ≥ 2. � – natural number. � = �2,3,5, … , ����  – the set of all primes in the first row of the table. �� – prime number, �� ∈ �, (" = 1, 2, … , #$%). �& = �'�, '�, … , '�(�  – the set of prime numbers, �& ∈ �. '� – prime number, '� ∈ �. ��'�� – the number of numbers that are multiples of the prime number '� in the first 

row of the table before striking out. )�'�� – the number of numbers that are multiples of the prime number '� ∈ � in an 

arbitrarily taken row of the table before striking out. 

The difference is denoted as follows: )�'�� − ��'�� = ∆&. Obviously, either ∆&= 0 or ∆&= 1. 

����� – the number of multiples of �� in the first row of the table, ����� = ,-./0. 
In some rows of the table, this indicator ����� = ,-./0 is preserved. For such strings, 

we denote the number �� as a "polite" number. At the same time, it is obvious that 

in some other row of the table, the number of numbers )����, multiples of ��, can be 

one (and only one, this is obvious) piece more )���� = ,-./0 + 1. So, in this row of 

the table there is a number that is a multiple of the number �� 1,-./0 + 12. 

For such lines, we denote the number �� as a "critical" number. And we denote the 

number � = ��� 1,-./0 + 12 as a "problem" number. The appearance of a 

"problematic" number in a row of the table is denoted as an "increase" of the number 

�� in "favor" of the number ,-./0 + 1. 

"Increase" is denoted by →. For example, if �� is "increased" in "favor" of ��, then �� → �� 

 or �� → , -.40 + 1. If �� → �� → �5, then �� → , -.40 + 1 → 6 -, 78409�: + 1,  if �� →
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�� → �5 → �;, then  �� → , -.40 + 1 → 6 -, 78409�: + 1 →
⎣⎢
⎢⎢
⎡ -

? 7@ 784AB4C9�⎦⎥
⎥⎥
⎤ + 1 →, … 

etc. ��'�� – is the number of non–crossed out numbers that are multiples of the prime 

number '� in the first row of the table after crossing out the numbers that are multiples 

of all the primes of the set �&. G�'�� – is the number of non–crossed out numbers that are multiples of the prime 

number '� ∈ � in an arbitrarily taken row of the table after crossing out numbers that 

are multiples of all the primes of the set �&. 
The difference is denoted as follows: G�'�� − ��'�� = H&. 
I ,-J0 – is the largest number in the first row of the table, a multiple of the natural 

number I. 

Property 1. If the "critical" number �� is "increased" in "favor" of the number ��, 

then the number ���� is the smallest number in the second row of the table, a 

multiple of ��. 

2. Introduction. In the first and randomly taken (except the second) in the rows of  

the table, in parallel (simultaneously), we will cross out all the numbers that are 

multiples of the primes of the set �. After crossing out, we compare (as a result) the 

number of crossed out numbers (their differences) in the first and in randomly taken 

rows of the table (in this article, we are not talking about the "sieve of Eratosthenes"). 

For example, if we cross out all the numbers in the table that are multiples of � and 

compare the results, we will make sure that in an arbitrarily taken row we will cross 

out no more numbers than in the first row of the table. 

Crossed out numbers are not crossed out again. 

According to Bertrand's postulate: for any natural � ≥ 2, there is a prime number in 

the interval [�, 2�]. Therefore, in this paper, we do not analyze the second line of 

the table for the presence of primes in it (we do not prove it). 

Crossing out numbers that are multiples of a particular prime number is carried out 



4 

 

in such a way (it turns out) that as a result, in an arbitrarily taken row of the table, 

we cross out no more numbers than in the first row of the table. After crossing out 

the numbers in the table that are multiples of each prime number of the set �, at least 

one number, "1", always remains uncrossed in the first row of the table (this is 

obvious). This means that in an arbitrarily taken string, too, at least one number 

remains uncrossed, which is a prime number. 

Suppose that all the numbers that are multiples of each number of the set of primes �& = �'�, '�, … , '�(� ∈ �  have been crossed out in the table. )�'�� – the number of numbers that are multiples of the prime number '� ∈ � in an 

arbitrarily taken row of the table before the start of strikethrough.  ��'�� – the number of numbers that are multiples of the prime number '� ∈ � in the 

first row of the table before striking out.  

The difference is denoted as follows:   )�'�� − ��'�� = ∆& ⇒ )�'�� = ��'�� + ∆&,                                                                 (1) 

where ∆&= 0, or ∆&= 1. G�'�� – is the number of non–crossed out numbers that are multiples of the prime 

number '� ∈ � in an arbitrarily taken row of the table after crossing out the numbers 

to all the primes of the set �& = �'�, '�, … , '�(� ∈ �. ��'�� – is the number of non–crossed out numbers that are multiples of the prime 

number '� ∈ � in the first row of the table after crossing out the numbers to the set 

of prime numbers �& = �'�, '�, … , '�(� ∈ �. 

The difference is denoted as follows:   G�'�� − ��'�� = H&.                                                                                                  (2) 

Lemma 1 (the conservation of order lemma). For the values of ∆& and H&, the 

inequality H& ≤ ∆& is satisfied.                   

Proof of Lemma 1. Suppose that in an arbitrarily taken string, when crossing out 

numbers that are multiples of a prime number (let it be '�) from the set �& =�'�, '�, … , '�(� ∈ �, numbers that are multiples of '� were crossed out. 

Consequently, numbers (one or more) multiples of '�'� were crossed out. We know 
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that for a natural number '�'�, the condition (3), (4), (5) is satisfied  )�'�'�� ≥ ��'�'��                                                                                                       (3) )�'�� − )�'�'�� = G�'��                                                                                             (4) ��'�� − ��'�'�� = ��'��                                                                                            (5) 

From (1) we subtract (3), we also take into account (4), (5) and (2)                       )�'�� − )�'�'�� ≤ ��'�� + ∆& − ��'�'�� ⇒ G�'�� ≤ ��'�� + ∆& ⇒ 

⇒ ��'�� + H& ≤ ��'�� + ∆& ⇒ H& ≤ ∆& 
Lemma 1 is proved. 

Auxiliary theorem. In each row of the table where there is no "critical" number, 

there is at least one prime number. 

Proof. 

Suppose that the number �� for an arbitrarily taken row of the table is "critical", and 

"increased" in "favor" of the "polite" number ��, that is, �� = , -.40 + 1. It can be 

assumed that some "problematic" number appeared in this line 

�� = ����� = ��� 1, -.40 + 12. 

In the first row of the table there are , -.40 pieces of numbers that are multiples of ��, 

and , -.L0 pieces of numbers, multiples of ��. There is no number in the first line that 

is a multiple of  ���� = �� 1, -.40 + 12. In total, in the first row of the table, the 

number of numbers that are multiples of �� and/or �� will be  

����� + ����� − ������� = @���A + @���A − @ �����A = @���A + @���A 

 In an arbitrarily taken row of the table there are , -.40 + 1 pieces of numbers that are 

multiples of ��, В произвольно взятой строке таблицы имеется , -.40 + 1 штук 

чисел, кратные ��, and , -.L0  numbers, multiples of ��. In total, in an arbitrarily 

taken row of the table, the number of numbers that are multiples of �� and/or �� will 
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be     )���� + )���� − )������ = 1, -.40 + 12 + , -.L0 − 1, -.4.L0 + ∆2 

More than one of these "problematic" numbers �� = ����� does not fit in one line 

of the table, and here ∆= 1. When crossing out numbers that are multiples of the 

"polite" number ��, the "problematic" number �� = ����� is also crossed out in an 

arbitrarily taken row of the table, as a result of which the number �� also becomes 

"polite". 

@���A + @���A = @���A + 1 + @���A − M@ �����A + ∆N 

Taking into account Lemma 1, it turns out that no more numbers are crossed out in 

an arbitrarily taken line than in the first line. And in the first line at least one number 

is not crossed out (this is "1"). This means that in an arbitrarily taken string, at least 

one number remains uncrossed, which is a prime number. 

The auxiliary theorem is proved. 

3. Suppose that at the next stage of crossing out in the table we encountered the first  

"critical" number – that is, the smallest "critical" prime number. Let it be ��. In other 

words, in an arbitrarily taken string there is a "problematic" number with a natural 

divisor ��. 

 
 

4. The behavior of all possible "problem" numbers OP = QRS�T�RS� + S�, 

which do not have "polite" divisors and RS is the smallest "critical" number. 

In the proof of the auxiliary theorem, we studied the behavior of the number 

�� = ����� = ��� 1, -.40 + 12, where �� is the only "critical" number, and 

"increased" in "favor" of the "polite" number ��. 

And now suppose that in an arbitrarily taken string there is a "problem" number 
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�� = ����� = ��������� + 1�, where the numbers �� and ����� + 1 are both 

different "critical" primes. That is,  �� ≠ ����� + 1. 

Option 1. Suppose that in an arbitrarily taken row of the table, the smallest "critical" 

number �� is "increased" in "favor" of the prime number �� = ����� + 1 =
1, -.40 + 12. At the same time, the number ����� + 1 is a "critical" prime number 

(meaning ����� + 1), and is "increased" in "favor" of the prime number ��, that is, 

1, -V�.4�9�0 + 12 = ��. A "problem" number �� = ����� = ��������� + 1� appears 

in an arbitrarily taken row of the table. 

The first two rows of the table are presented as in Figure 1. Obviously, if � = 1, then 

the number �� = ���� = �� 1, -.40 + 12 is in the second row of the table. If � > 1, 

and has a "polite" divisor (let it be X), then the "problematic" number �� is crossed 

out when we cross out numbers that are multiples of the "polite" X, and the "critical" 

numbers �� and �� are now becoming "polite". 

Option 2. Consider the "problem" number  �5 = �����. In the continuation, for the 

"critical" numbers �� and ��, assume that � > 1 and has no "polite" prime divisor. 

That is, all prime divisors of � are "critical". Given that �� is the smallest "critical" 

prime, then �� > ��. There cannot be � = �5�;, where �5 and �; are both "critical" 

primes, and �5 is "increased" in "favor" of �; (or vice versa). Figure 1 shows that 

the number ���� = �� 1, -.40 + 12 and the number �5�; = �5 1, -.Z0 + 12 are both in 

the second row of the table. The conditions ���� ≥ � + 1, and �5�; ≥ � + 1 are 

met. It turns out �5 ≥ �� + 1��. And this means that the number �5 = �����5�; is 

outside the table. 

 Option 3. Next, consider the options if the "increase" of the smallest "critical" 

number �� continues like this: �� → �� → ⋯ → �\ → ⋯ → �]. And the "problem"  
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number will be like this: �; = ���� ∙ … ∙ �\ ∙ … ∙ �]. There are no "polite" numbers 

among the natural divisors of the "problematic" number �;, and the length of the 

table row (that is, the value of �) is limited. Therefore, the "critical" number �] must 

also be "increased". There are two possible options: or �] → �\, or �] → ��. Here 

_ = 2, … , `, and ` ≥ 4.  

Figure 2 shows that regardless of whether ���� > �\(��\ or �\(��\ > ����, the 

conditions ���� ≥ � + 1 and �\(��\ ≥ � + 1 are met. So �; ≥ �� + 1�� 

(controversy). 

Option 4. Consider the option �a = �����5, where either �� → �� → �5 → ��, or �� → �� → �5 → ��.  

Figure 3 shows a contradiction. According to property 1 in the second line, the 

number ���� is the smallest number that is a multiple of the number �� (since �� →��), also, the number ���5 is the smallest number in the second row, which is a 

multiple of the number ��. However, these two conditions are contradicted by the 

location of the numbers �5�� (in the case of �5 → ��) and �5�� (in the case of �5 →��), respectively. 

 

Property 2. In the �� + 1� th row of the table, the number g is a "polite" number. 

In other words, in the first and �� + 1� th rows of the table, the number of numbers 

that are multiples of � are equal and are in the same columns of the table. It's 

obvious.  

Option 5. Let's consider the case when there is a "problem" number �b = ����� in 

an arbitrarily taken string, where �� → �� and �� → ��.  

Taking into account property 1, it should be �� > �� (figure 4). In other words, in 

the case of �����, there cannot be a "problem" number in the form of �� > ��. Let 's  
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write ���� = � + c de.Lfgh ����� = ���� + c� = ��� + ��c. Since the number ����  

in the second row is the smallest multiple of �� (property 1), then ��c < �. 

Therefore, the number �b = ����� = ��� + ��c is in the row under the number �� +1. Given property 2, the number �� is "polite", and the number �b = ����� is not 

"problematic" 

Option 6. Consider the case when there is a "problem" number �j = ����� in an 

arbitrarily taken string, where �� → �� and �� → ��. 

 

Let's write (figure 5) ���� = � + c de.4 и de.Lfgggggggh ����� = ���� + c� = ��� + ��c. 

Since the number ���� in the second row is the smallest multiple of �� and �� 

(property 1) at the same time, then ��c < �. Therefore, the number �j = ��� +��c is in the row under the number �� + 1. Given property 2, the number �� is 

"polite", and the number �j = ����� is not "problematic". 

 Option 7. Let's consider the case when there is a "problem" number �l = ��m in an 

arbitrarily taken string, where �� → ��. It is obvious that n = 3.  

Otherwise (figure 6), either �l = ��; ≥ �� + 1�� (the number is outside the table), 

or the number �l = ��� is in the second row. So �l = ��5. Let 's write ���� = � + c
de.4fgh ��5 = ���� + c� = ��� + ��c. Since the number ���� is the smallest number 

in the second row, a multiple of �� (property 1), then ��c < �. Therefore, the 

number �l = ��5 = ��� + ��c is in the row numbered �� + 1. Given property 2, the 

number �� is "polite", and the number �l = ��5 is not "problematic". 

The theorem on the distribution of primes is proved. 
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Corollary 1. Legendre's conjecture. For any natural � between �� and �� + 1�� 

there is at least one prime number.  

It is obvious that Legendre's hypothesis is a special case of the prime number 

 

distribution theorem, and for any natural � between �� and �� + 1�� there will be 

at least two primes, since there are two complete rows in the specified interval (at 

least one prime number in each).  

Corollary 2. Brocard's conjecture. For any natural number ̀  between I]� and I]9��  

(where I] > 2 and I]9� are two consecutive primes), there are at least four primes. 

For any prime number I] > 2, we can write as follows:  I] = � − 1 and I] + 2 = � + 1. 

 I]9� − I] ≥ 2 

Between I]� = �� − 1�� and �I] + 2�� = �� + 1�� there are four complete lines, 

each of which has at least one prime number. We take into account that the minimum 

difference between consecutive (starting from 3) primes is 2, and therefore we chose I]9� = � + 1. So, the greater the difference between consecutive primes, the more 

primes there are between their squares. 

 … �� − 2�� �� − 1�� … �� − 1�� �� − 1�� + 1 … �� �� + 1 … �� + 1�� �� + 1�� + 1 … �� + 2�� �� + 1�� …  

 

 


