There is no Heron triangle with three rational medians

Logman Shihaliev

logman1@list.ru +994505149553
ORCID: 0000-0003-1063-4712

AbStract. The subject of this article is the proof that the Heron of a triangle with three integer medians does not exist. The article provides proofs of three lemmas. As a result, the method of infinite descent proved that the Heron of a triangle with three integer medians does not exist.
The relevance of this article lies in the fact that the problem under study is one of the unsolved problems of number theory.

Key words. Heron triangles; Integer triangle; Number theory; geometry.
CLASSIFICATION NUMBERS: MSC: 11R04, 14G99, 11D99

1. Introduction

The problem: Does a triangle with integer sides, integer medians and integer area exist? [1, 2, 3].
It is known that there are triangles with integer sides and medians. For example, the smallest of these triangles has sides and medians (136, 170, 174) and (158, 131, 127), respectively.

In this article, we prove the theorem that there is no triangle with three integer sides, three integer medians and an integer area. To do this, the following three lemmas with proofs are given at the beginning:

Lemma 1 For any triangle with rational sides and medians, there is another, but not similar triangle with rational sides and medians.

Lemma 2. If at least one median of a triangle with integer sides and medians is a multiple of 3 , then all its medians are multiples of 3 .

Lemma 3. If we assume that there is a triangle with integer sides, medians and area, then at least one of its medians must be multiple of 3 .

Theorem. There is no Heron triangle with three integer medians.
Using the results of the above three lemmas, we prove the theorem by the method of infinite descent.

2. Proofs

Proof of Lemma 1.

Here it is proved that triangles with integer sides and medians exist only and only in pairs (like "twins") - one (any) of which follows from the other, and these two triangles are not similar triangles between themselves.

Fig1
Here (for Fig1): $A B=c, B C=a, A C=b, A F=m_{a}, B E=m_{b}, D C=m_{c}$, $O P=\frac{2}{3} m_{a}, C P=\frac{2}{3} m_{b}, O C=\frac{2}{3} m_{c} O Q=\frac{1}{2} b, H P=\frac{1}{2} c, F C=\frac{1}{2} a$
The last six equalities are obtained by the results of Lemma 1.
Assume that the sides and medians of the triangle $\triangle A B C$ are rational (Fig1). Using the triangle $\triangle A B C$, we construct the triangle $\triangle O P C$.

To do this, draw (starting from point C) $C P \| O B$ to the intersection with the continuation of the median $A F=m_{a}$ at point P.
It turns out that the triangles $\triangle A P C$ and $\triangle A O E$ are similar and
$C P: E O=A P: A O=A C: A E=2: 1$
Taking into account the properties of the medians $\triangle A B C$ for the sides of the triangle $\triangle O P C$, we obtain
$C P=O B=\frac{2}{3} m_{b}, \quad O C=\frac{2}{3} m_{c}, \quad O P=O A=\frac{2}{3} m_{a}$
For the medians of the triangle ABC , it turns out
$F C=\frac{1}{2} B C=\frac{1}{2} a, \quad O Q=\frac{1}{2} A C=\frac{1}{2} b, \quad H P=\frac{1}{2} A B=\frac{1}{2} c$
In other words, a triangle $\triangle O P C$ is constructed by parallel displacements of $\frac{2}{3}$ of the segments of the medians of triangle $\triangle A B C$. As for medians of triangle $\triangle O P C$ they are constructed by parallel displacements of $\frac{1}{2}$ parts of $\triangle A B C$ triangle's sides. This means that all sides and medians of the $\triangle O P C$ triangle are also rational.

The triangles $\triangle A B C$ and $\triangle O P C$ are not similar to each other. The sides of these triangles are rational and do not have the similarity property. The ratio of the areas of similar triangles should be equal to the square of the similarity coefficient.
In our case (Fig1) the ratio of the areas of the triangles is
$\frac{A_{\triangle O P C}}{A_{\triangle A B C}}=\frac{1}{3}$
which is not the square of rational number.
Lemma 1 is proved.
Note 1. Taking into account (3), we obtain equality (12).
Proof of Lemma 2.
Let's write down the formulas of dependence between the sides and medians of triangles:
$\left\{\begin{array}{l}a=\frac{2}{3} \sqrt{2 m_{b}^{2}+2 m_{c}^{2}-m_{a}^{2}} \\ b=\frac{2}{3} \sqrt{2 m_{a}^{2}+2 m_{c}^{2}-m_{b}^{2}} \\ c=\frac{2}{3} \sqrt{2 m_{a}^{2}+2 m_{b}^{2}-m_{c}^{2}}\end{array} \Rightarrow\left\{\begin{array}{l}m_{a}=\frac{1}{2} \sqrt{2 b^{2}+2 c^{2}-a^{2}} \\ m_{b}=\frac{1}{2} \sqrt{2 a^{2}+2 c^{2}-b^{2}} \\ m_{c}=\frac{1}{2} \sqrt{2 a^{2}+2 b^{2}-c^{2}}\end{array} \Rightarrow\left\{\begin{array}{l}m_{a}=\frac{1}{2} \sqrt{3 b^{2}+3 c^{2}-\left(a^{2}+b^{2}+c^{2}\right)} \\ m_{b}=\frac{1}{2} \sqrt{3 a^{2}+3 c^{2}-\left(a^{2}+b^{2}+c^{2}\right)} \\ m_{c}=\frac{1}{2} \sqrt{3 a^{2}+3 b^{2}-\left(a^{2}+b^{2}+c^{2}\right)}\end{array}\right.\right.\right.$
It is obvious from these three formulas that if at least one of the medians is a multiple of 3 , then
$a^{2}+b^{2}+c^{2} \equiv 0(\bmod 3)$
This means that all three medians are multiples of 3 .
Lemma 2 is proved.

$$
* * *
$$

In addition to Fig1, we examine three more figures.

In the proof of Lemma 1, we have constructed the $\triangle O P C$ triangle (Fig1).
Using the $\triangle O P C$ triangle, three more triangles are constructed (the vertices of the $\triangle O P C$ triangle in all three figures are preserved and indicated in large letters).

Parameters of Fig2. Taking the vertex P as the intersection point of the medians, the triangle $\triangle O M C$ is constructed (Fig2).
It will be useful if we note that the $\triangle O M C$ triangle has one median ($H M$) equal to $\frac{3}{2} c$, two medians ($O T, C V$) equal to two medians of the $\triangle A B C$ triangle (m_{a}, m_{b}). The two sides $O M$ and $C M$ of the triangle $\triangle O M C$ are not investigated in this article. If we construct a triangle from the medians $\left(\frac{3}{2} c, m_{a}, m_{b}\right)$ of the $\triangle O M C$ triangle, then the formula for the area of the resulting triangle (let's denote T_2) will be as follows

$$
\begin{equation*}
A_{T_{-} 2}=\frac{1}{4} \sqrt{\left(m_{a}+m_{b}+\frac{3}{2} c\right)\left(m_{a}+m_{b}-\frac{3}{2} c\right)\left(m_{a}-m_{b}+\frac{3}{2} c\right)\left(-m_{a}+m_{b}+\frac{3}{2} c\right)} \tag{6}
\end{equation*}
$$

Fig2
Here (for Fig2): $\quad C P=\frac{2}{3} m_{b}, C V=m_{b}, O P=\frac{2}{3} m_{a}, O T=m_{a}, O C=\frac{2}{3} m_{c}$, $H M=\frac{3}{2} c, A_{\triangle O M C}=3 A_{\triangle O P C}$.

Parameters of Fig3. Taking the vertex O as the intersection point of the medians, the triangle $\triangle N P C$ is constructed (Fig3).

It will be useful if we note that the $\triangle N P C$ triangle has one median $(N Q)$ equal to $\frac{3}{2} b$, two medians $(P W, S U)$ equal to two medians of the $\triangle A B C$ triangle $\left(m_{a}, m_{c}\right)$. The two sides $N P$ and $N C$ of the triangle $\triangle N P C$ are not investigated in this article. If we construct a triangle from the medians $\left(\frac{3}{2} b, m_{a}, m_{c}\right)$ of the $\triangle N P C$ triangle, then the formula for the area of the resulting triangle (let's denote T_3) will be as follows

$$
\begin{equation*}
A_{T_{-} 3}=\frac{1}{4} \sqrt{\left(m_{a}+m_{c}+\frac{3}{2} b\right)\left(m_{a}+m_{c}-\frac{3}{2} b\right)\left(m_{a}-m_{c}+\frac{3}{2} b\right)\left(-m_{a}+m_{c}+\frac{3}{2} b\right)} \tag{7}
\end{equation*}
$$

Fig3
Here (for Fig3): $C O=\frac{2}{3} m_{c}, C U=m_{c}, P O=\frac{2}{3} m_{a}, P W=m_{a}, P C=\frac{2}{3} m_{b}$, $N Q=\frac{3}{2} b, A_{\triangle N P C}=3 A_{\triangle O P C}$.
Parameters of Fig4. Taking the vertex C as the intersection point of the medians, the triangle $\triangle O P L$ is constructed (Fig4).

It will be useful if we note that the $\triangle O P L$ triangle has one median $(F L)$ equal to $\frac{3}{2} a$, two medians $(P R, O K)$ equal to two medians of the $\triangle A B C$ triangle $\left(m_{b}, m_{c}\right)$.
The two sides $O L$ and $P L$ of the triangle $\triangle O P L$ are not investigated in this article. If we construct a triangle from the medians $\left(\frac{3}{2} a, m_{b}, m_{c}\right)$ of the $\triangle N P C$ triangle, then the formula for the area of the resulting triangle (let's denote T_4) will be as follows

$$
\begin{equation*}
A_{T_{-} 4}=\frac{1}{4} \sqrt{\left(m_{b}+m_{c}+\frac{3}{2} a\right)\left(m_{b}+m_{c}-\frac{3}{2} a\right)\left(m_{b}-m_{c}+\frac{3}{2} a\right)\left(-m_{b}+m_{c}+\frac{3}{2} a\right)} \tag{8}
\end{equation*}
$$

Fig4
Here (for Fig4): $P C=\frac{2}{3} m_{b}, P R=m_{b}, O C=\frac{2}{3} m_{c}, O K=m_{c}, O P=\frac{2}{3} m_{a}$, $F L=\frac{3}{2} a, A_{\triangle O P L}=3 A_{\triangle O P C}$.

If we construct a triangle from the medians $\left(m_{a}, m_{b}, m_{c}\right)$ of the $\triangle A B C$ triangle, then the formula for the area of the resulting triangle (let's denote T_1) will be as follows

$$
\begin{equation*}
A_{T_{-} 1}=\frac{1}{4} \sqrt{\left(m_{a}+m_{b}+m_{c}\right)\left(m_{a}+m_{b}-m_{c}\right)\left(m_{a}-m_{b}+m_{c}\right)\left(-m_{a}+m_{b}+m_{c}\right)} \tag{9}
\end{equation*}
$$

Let's write down the formula for the area of the triangle $\triangle A B C$.
$A_{\triangle A B C}=\frac{1}{3} \sqrt{\left(m_{a}+m_{b}+m_{c}\right)\left(m_{a}+m_{b}-m_{c}\right)\left(m_{a}-m_{b}+m_{c}\right)\left(-m_{a}+m_{b}+m_{c}\right)}$
Taking into account (9) and (10), we get
$A_{T_{-} 1}=\frac{3}{4} A_{\triangle A B C}$
After studying Lemma 1 , we learn that

$$
\begin{equation*}
A_{\triangle O M C}=A_{\triangle N P C}=A_{\triangle O P L}=A_{\triangle A B C}=3 A_{\triangle O P C} \tag{12}
\end{equation*}
$$

Taking into account (11) and (12), we get
$A_{T_{-} 2}=A_{T_{-} 3}=A_{T_{-} 4}=A_{T_{-} 1}$

Proof of Lemma 3.

Suppose there is a triangle $\triangle A B C$ with integer sides, medians and area (Fig1), where $\left(a, b, c, m_{a}, m_{b}, m_{c}, A_{\triangle A B C}\right)=1$.
Let's prove that the medians of the triangle $\triangle A B C$ are multiples of 3 .
From two equations (9) and (6) we will make a system of equations.

$$
\left\{\begin{array}{l}
A_{T_{-} 1}=\frac{1}{4} \sqrt{\left(m_{a}+m_{b}+m_{c}\right)\left(m_{a}+m_{b}-m_{c}\right)\left(m_{a}-m_{b}+m_{c}\right)\left(-m_{a}+m_{b}+m_{c}\right)} \tag{15}\\
A_{T_{-} 2}=\frac{1}{4} \sqrt{\left(m_{a}+m_{b}+\frac{3}{2} c\right)\left(m_{a}+m_{b}-\frac{3}{2} c\right)\left(m_{a}-m_{b}+\frac{3}{2} c\right)\left(-m_{a}+m_{b}+\frac{3}{2} c\right)}
\end{array}\right.
$$

Taking into account (13), we denote

$$
\begin{align*}
& A_{T_{-} 1}=A_{T_{2}}=S \\
& \left\{\begin{array}{l}
S=\frac{1}{4} \sqrt{\left(m_{a}+m_{b}+m_{c}\right)\left(m_{a}+m_{b}-m_{c}\right)\left(m_{a}-m_{b}+m_{c}\right)\left(-m_{a}+m_{b}+m_{c}\right)} \\
S=\frac{1}{4} \sqrt{\left(m_{a}+m_{b}+\frac{3}{2} c\right)\left(m_{a}+m_{b}-\frac{3}{2} c\right)\left(m_{a}-m_{b}+\frac{3}{2} c\right)\left(-m_{a}+m_{b}+\frac{3}{2} c\right)}
\end{array}\right. \\
& \left\{\begin{array}{l}
4 S=\sqrt{\left(m_{a}+m_{b}+m_{c}\right)\left(m_{a}+m_{b}-m_{c}\right)\left(m_{a}-m_{b}+m_{c}\right)\left(-m_{a}+m_{b}+m_{c}\right)} \\
4 S=\sqrt{\left(m_{a}+m_{b}+\frac{3}{2} c\right)\left(m_{a}+m_{b}-\frac{3}{2} c\right)\left(m_{a}-m_{b}+\frac{3}{2} c\right)\left(-m_{a}+m_{b}+\frac{3}{2} c\right)}
\end{array}\right. \\
& \left\{(4 S)^{2}=\left(m_{a}+m_{b}+m_{c}\right)\left(m_{a}+m_{b}-m_{c}\right)\left(m_{a}-m_{b}+m_{c}\right)\left(-m_{a}+m_{b}+m_{c}\right)\right. \\
& \left\{(4 S)^{2}=\left(m_{a}+m_{b}+\frac{3}{2} c\right)\left(m_{a}+m_{b}-\frac{3}{2} c\right)\left(m_{a}-m_{b}+\frac{3}{2} c\right)\left(-m_{a}+m_{b}+\frac{3}{2} c\right)\right. \\
& \left\{\begin{array}{l}
(4 S)^{2}=\left(\left(m_{a}+m_{b}\right)+m_{c}\right)\left(\left(m_{a}+m_{b}\right)-m_{c}\right)\left(m_{c}+m_{a}-m_{b}\right)\left(m_{c}-m_{a}+m_{b}\right) \\
(4 S)^{2}=\left(\left(m_{a}+m_{b}\right)+\frac{3}{2} c\right)\left(\left(m_{a}+m_{b}\right)-\frac{3}{2} c\right)\left(\frac{3}{2} c+m_{a}-m_{b}\right)\left(\frac{3}{2} c-m_{a}+m_{b}\right)
\end{array}\right. \\
& \left\{\begin{array}{l}
(4 S)^{2}=\left(\left(m_{a}+m_{b}\right)+m_{c}\right)\left(\left(m_{a}+m_{b}\right)-m_{c}\right)\left(m_{c}+\left(m_{a}-m_{b}\right)\right)\left(m_{c}-\left(m_{a}-m_{b}\right)\right) \\
(4 S)^{2}=\left(\left(m_{a}+m_{b}\right)+\frac{3}{2} c\right)\left(\left(m_{a}+m_{b}\right)-\frac{3}{2} c\right)\left(\frac{3}{2} c+\left(m_{a}-m_{b}\right)\right)\left(\frac{3}{2} c-\left(m_{a}-m_{b}\right)\right)
\end{array}\right. \\
& \left\{\begin{array}{l}
(4 S)^{2}=\left(\left(m_{a}+m_{b}\right)^{2}-m_{c}^{2}\right)\left(m_{c}^{2}-\left(m_{a}-m_{b}\right)^{2}\right) \\
(4 S)^{2}=\left(\left(m_{a}+m_{b}\right)^{2}-\left(\frac{3}{2} c\right)^{2}\right)\left(\left(\frac{3}{2} c\right)^{2}-\left(m_{a}-m_{b}\right)^{2}\right)
\end{array}\right. \tag{16}
\end{align*}
$$

Let's denote some expressions as follows (for convenience of calculations):

$$
\left\{\begin{array}{l}
\left(m_{a}+m_{b}\right)^{2}-m_{c}^{2}=x \tag{17}\\
m_{c}^{2}-\left(m_{a}-m_{b}\right)^{2}=y \\
\left(\frac{3}{2} c\right)^{2}-m_{c}^{2}=\Delta \\
\left(m_{a}+m_{b}\right)^{2}-\left(\frac{3}{2} c\right)^{2}=x-\Delta \\
\left(\frac{3}{2} c\right)^{2}-\left(m_{a}-m_{b}\right)^{2}=y+\Delta
\end{array}\right.
$$

Replace in (16)
$\left\{\begin{array}{l}(4 S)^{2}=x y \\ (4 S)^{2}=(x-\Delta)(y+\Delta)\end{array}\right.$
We get
$x y=(x-\Delta)(y+\Delta) \Rightarrow x y=x y+x \Delta-\Delta y-\Delta^{2} \Rightarrow 0=(x-y-\Delta) \Delta$
Let's solve equation (19)
Either $\Delta=0$,
either $x-y-\Delta=0$.
If $\Delta=0$, then $\Delta=\left(\frac{3}{2} c\right)^{2}-m_{c}^{2}=0$.

$$
\begin{align*}
& \left(\frac{3}{2} c\right)^{2}-m_{c}^{2}=0 \Rightarrow \frac{3}{2} c-m_{c}=0 \Rightarrow c=\frac{2}{3} m_{c} \Rightarrow \frac{2}{3} m_{c}=\frac{2}{3} \sqrt{2 m_{a}^{2}+2 m_{b}^{2}-m_{c}^{2}} \Rightarrow \\
& \begin{aligned}
& \Rightarrow m_{c}=\sqrt{2 m_{a}^{2}+2 m_{b}^{2}-m_{c}^{2}} \Rightarrow m_{c}^{2}=2 m_{a}^{2}+2 m_{b}^{2}-m_{c}^{2} \Rightarrow \\
& \Rightarrow m_{c}^{2}=m_{a}^{2}+m_{b}^{2}
\end{aligned}
\end{align*}
$$

And this (22) is impossible. Because we took T_1 and T_2 in (15) arbitrarily. We could take T_1 and T_3, or T_1 and T_4.

If we took T_1 and T_3, we would get $m_{b}^{2}=m_{a}^{2}+m_{c}^{2}$.
If we took T_1 and T_4, we would get $m_{a}^{2}=m_{b}^{2}+m_{c}^{2}$.
If
$\left\{\begin{array}{l}m_{c}^{2}=m_{a}^{2}+m_{b}^{2} \\ m_{b}^{2}=m_{a}^{2}+m_{c}^{2}, \\ m_{a}^{2}=m_{b}^{2}+m_{c}^{2}\end{array}\right.$
then $m_{a}=m_{b}=m_{c}=0$.
If in (19) $x-y-\Delta=0$, then $y=x-\Delta$.
Taking into account (23) in the first equation (18) we will replace $y=x-\Delta$, and in the second equation we will replace $x-\Delta=y$.
$\left\{\begin{array}{l}(4 S)^{2}=x y \\ (4 S)^{2}=(x-\Delta)(y+\Delta)\end{array} \Rightarrow\left\{\begin{array}{l}(4 S)^{2}=x(x-\Delta) \\ (4 S)^{2}=y(y+\Delta)\end{array}\right.\right.$
As a result (24) and (17) instead of the system of equations (16), we get the following system of equations (25).
$\left\{\begin{array}{l}(4 S)^{2}=\left(\left(m_{a}+m_{b}\right)^{2}-m_{c}^{2}\right)\left(\left(m_{a}+m_{b}\right)^{2}-\left(\frac{3}{2} c\right)^{2}\right) \\ (4 S)^{2}=\left(m_{c}^{2}-\left(m_{a}-m_{b}\right)^{2}\right)\left(\left(\frac{3}{2} c\right)^{2}-\left(m_{a}-m_{b}\right)^{2}\right)\end{array}\right.$
$\left\{\begin{array}{l}\left(\left(m_{a}+m_{b}\right)^{2}-m_{c}^{2}\right)\left(\left(m_{a}+m_{b}\right)^{2}-\left(\frac{3}{2} c\right)^{2}\right)-(4 S)^{2}=0 \\ \left(m_{c}^{2}-\left(m_{a}-m_{b}\right)^{2}\right)\left(\left(\frac{3}{2} c\right)^{2}-\left(m_{a}-m_{b}\right)^{2}\right)-(4 S)^{2}=0\end{array}\right.$
$\left\{\begin{array}{l}\left(m_{a}+m_{b}\right)^{4}-\left(m_{a}+m_{b}\right)^{2}\left(\frac{3}{2} c\right)^{2}-m_{c}^{2}\left(m_{a}+m_{b}\right)^{2}+m_{c}^{2}\left(\frac{3}{2} c\right)^{2}-(4 S)^{2}=0 \\ m_{c}^{2}\left(\frac{3}{2} c\right)^{2}-m_{c}^{2}\left(m_{a}-m_{b}\right)^{2}-\left(m_{a}-m_{b}\right)^{2}\left(\frac{3}{2} c\right)^{2}+\left(m_{a}-m_{b}\right)^{4}-(4 S)^{2}=0\end{array}\right.$
$\left\{\begin{array}{l}\left(m_{a}+m_{b}\right)^{4}-\left(m_{c}^{2}+\left(\frac{3}{2} c\right)^{2}\right)\left(m_{a}+m_{b}\right)^{2}+\left(\frac{3}{2} c m_{c}\right)^{2}-(4 S)^{2}=0 \\ \left(m_{a}-m_{b}\right)^{4}-\left(m_{c}^{2}+\left(\frac{3}{2} c\right)^{2}\right)\left(m_{a}-m_{b}\right)^{2}+\left(\frac{3}{2} c m_{c}\right)^{2}-(4 S)^{2}=0\end{array}\right.$
Let's denote it like this
$\left\{\begin{array}{l}\left(m_{a}+m_{b}\right)^{2}=z \\ \left(m_{a}-m_{b}\right)^{2}=w\end{array}\right.$
We get two equivalent equations:

$$
\begin{align*}
& z^{2}-\left(m_{c}^{2}+\left(\frac{3}{2} c\right)^{2}\right) z+\left(\frac{3}{2} c m_{c}\right)^{2}-(4 S)^{2}=0 \tag{28}\\
& w^{2}-\left(m_{c}^{2}+\left(\frac{3}{2} c\right)^{2}\right) w+\left(\frac{3}{2} c m_{c}\right)^{2}-(4 S)^{2}=0 \tag{29}
\end{align*}
$$

The first solution:

Is such equality possible?
$z=w \Rightarrow\left(m_{a}+m_{b}\right)^{2}=\left(m_{a}-m_{b}\right)^{2} \Rightarrow$

$$
\begin{equation*}
\Rightarrow\left(m_{a}+m_{b}\right)^{2}-\left(m_{a}-m_{b}\right)^{2}=0 \Rightarrow 4 m_{a} m_{b}=0 \tag{30}
\end{equation*}
$$

According to the conditions of the problem $m_{a} m_{b} \neq 0$.
The second solution (this method is useful for detailed analysis):
In this case, it is enough to solve one of the two equations (let's explore z). Obviously, we have a quadratic equation with coefficients
$m_{c}^{2}+\left(\frac{3}{2} c\right)^{2}$ и $\left(\frac{3}{2} c m_{c}\right)^{2}-(4 S)^{2}$,
and by requirement (26) has two roots $\left(m_{a}+m_{b}\right)^{2}$ and $\left(m_{a}-m_{b}\right)^{2}$.
That is, if
$z^{2}-\left(m_{c}^{2}+\left(\frac{3}{2} c\right)^{2}\right) z+\left(\frac{3}{2} c m_{c}\right)^{2}-(4 S)^{2}=0$,
then $z_{1}=\left(m_{a}+m_{b}\right)^{2}$ и $z_{2}=\left(m_{a}-m_{b}\right)^{2}$.
By Vieta 's theorem (the sum of the roots)

$$
\begin{gather*}
\left(m_{a}+m_{b}\right)^{2}+\left(m_{a}-m_{b}\right)^{2}=m_{c}^{2}+\left(\frac{3}{2} c\right)^{2} \Rightarrow \\
\Rightarrow 2 m_{a}^{2}+2 m_{b}^{2}-m_{c}^{2}=\frac{9}{4} c^{2} \Rightarrow \\
\Rightarrow c=\frac{2}{3} \sqrt{2 m_{a}^{2}+2 m_{b}^{2}-m_{c}^{2}} \tag{34}
\end{gather*}
$$

(identity)
The last formula (4) - the formula (identity) of the sides of the triangle through the medians.

By Vieta 's theorem (the product of roots)
$\left(m_{a}+m_{b}\right)^{2}\left(m_{a}-m_{b}\right)^{2}=\left(\frac{3}{2} c m_{c}\right)^{2}-(4 S)^{2} \Rightarrow$
$\Rightarrow\left(m_{a}^{2}-m_{b}^{2}\right)^{2}+(4 S)^{2}=\left(\frac{3}{2} c m_{c}\right)^{2}$
Obviously, if $c, m_{a}, m_{b}, m_{c}, S$ are integers, then the numbers $m_{a}^{2}-m_{b}^{2}, 4 S, \frac{3}{2} c m_{c}$ are a Pythagorean triple. If $\frac{3}{2} c m_{c} \equiv 0(\bmod 3)$, then the Pythagorean triple $m_{a}^{2}-$ $m_{b}^{2}, 4 S, \frac{3}{2} c m_{c}$ not primitive. There are three options:

The first option. As a result, we get
$m_{a} \equiv 0(\bmod 3), m_{b} \equiv 0(\bmod 3)$.
The second option. Formulas (36) are not correct. There are natural numbers v and w for which (37), (38) and (39) holds

$$
\begin{align*}
& m_{a}^{2}-m_{b}^{2}=v^{2}-w^{2}, \text { where } v \equiv 0(\bmod 3), w \equiv 0(\bmod 3) \tag{37}\\
& 2 v w=4 S \tag{38}\\
& v^{2}+w^{2}=\frac{3}{2} c m_{c} \tag{39}
\end{align*}
$$

Taking into account (37) and (39) we get:
$v^{2}+w^{2} \equiv 0(\bmod 9) \Rightarrow \frac{3}{2} c m_{c} \equiv 0(\bmod 9) \Rightarrow \frac{1}{2} c m_{c} \equiv 0(\bmod 3)$
Therefore, either $c \equiv 0(\bmod 3)$ or $m_{c} \equiv 0(\bmod 3)$. (or both)
Let $c \equiv 0(\bmod 3)$.

Due to the arbitrariness of c and m_{c}, we get:
$\left\{\begin{array}{l}c \equiv 0(\bmod 3) \\ a \equiv 0(\bmod 3) \\ b \equiv 0(\bmod 3)\end{array} \quad\right.$ taking into account $(4) \quad\left\{\begin{array}{l}m_{c} \equiv 0(\bmod 3) \\ m_{a} \equiv 0(\bmod 3) \\ m_{b} \equiv 0(\bmod 3)\end{array}\right.$
The third option. Formulas (36) are not correct. There are natural numbers v and w for which (44), (45) and (46) holds
$m_{a}^{2}-m_{b}^{2}=2 v w$, where $v \equiv 0(\bmod 3), w \equiv 0(\bmod 3)$
$v^{2}+w^{2}=\frac{3}{2} c m_{c}$
$v^{2}-w^{2}=4 S$
Taking into account (44) and (45) we get:
$v^{2}+w^{2} \equiv 0(\bmod 9) \Rightarrow \frac{3}{2} c m_{c} \equiv 0(\bmod 9) \Rightarrow \frac{1}{2} c m_{c} \equiv 0(\bmod 3)$
Therefore, either $c \equiv 0(\bmod 3)$ or $m_{c} \equiv 0(\bmod 3)$. (or both)
Let $c \equiv 0(\bmod 3)$.
Due to the arbitrariness of c and m_{c}, we get:
$\left\{\begin{array}{l}c \equiv 0(\bmod 3) \\ a \equiv 0(\bmod 3) \\ b \equiv 0(\bmod 3)\end{array} \quad\right.$ taking into account $(4) \quad\left\{\begin{array}{l}m_{c} \equiv 0(\bmod 3) \\ m_{a} \equiv 0(\bmod 3) \\ m_{b} \equiv 0(\bmod 3)\end{array}\right.$
Lemma 3 is proved.
Proof of the theorem (by the method of infinite descent).
Suppose there is a triangle with integer area, medians and sides (Fig1). And the triangle $\triangle A B C$ is the one with the smallest area among them.
Using the triangle $\triangle A B C$, we will construct the triangle $\triangle O A_{0} C$.
Taking into account Lemma 1, Lemma 2 and Lemma 3 all medians of triangle $\triangle A B C$ are multiples of 3 . Consequently, the sides of triangle $\triangle O A_{0} C$ are integers. Since all sides of the triangle $\triangle A B C$ are even (formulas (4)), then the medians of the triangle $\Delta O A_{0} C$ are integers. It is known from Lemma 1 (3) that
$\frac{A_{\triangle O P C}}{A_{\triangle A B C}}=\frac{1}{3} \Rightarrow A_{\triangle O P C}=\frac{1}{3} A_{\triangle A B C}<A_{\triangle A B C}$
In other words, there is another triangle $\Delta O A_{0} C$ with integer sides, medians, and area less than the original triangle $\triangle A B C$. And this contradicts our assumption that the area of a triangle with integer area, medians and sides $A_{\triangle A B C}$ is the smallest.

By repeating this process will eventually yield an integral perfect triangle of area less than 1 , which is impossible.

The theorem is proved.
There are no triangles with three whole sides, three whole medians, and an entire area.

LIST OF LITERATURE

1. Richard K. Guy, Unsolved Problems in Number Theory, second edition. Springer Verlag. New York: 1994. Page 188.
2. http://cage.ugent.be/~hvernaev/problems/Proble22.html
3. https://en.wikipedia.org/wiki/Heronian triangle
