


Problem Books in Mathematics 

Edited by P. R. Halmos 



Problem Books in Mathematics 

Series Editor: P.R. Halmos 

Polynomials 
by Edward I. Barbeau 

Problems in Geometry 
by Marcel Berger. Pierre Pansu. lean-Pic Berry. and Xavier Saint-Raymond 

Problem Book for First Year Calculus 
by George W. Bluman 

Exercises in Probabillty 
by T. Cacoullos 

An Introduction to HUbet Space and Quantum Logic 
by David W. Cohen 

Unsolved Problems in Geometry 
by Hallard T. Crofi. Kenneth I. Falconer. and Richard K. Guy 

Problems in Analysis 
by Bernard R. Gelbaum 

Problems in Real and Complex Analysis 
by Bernard R. Gelbaum 

Theorems and Counterexamples in Mathematics 
by Bernard R. Gelbaum and lohn M.H. Olmsted 

Exercises in Integration 
by Claude George 

Algebraic Logic 
by S.G. Gindikin 

Unsolved Problems in Number Theory (2nd. ed) 
by Richard K. Guy 

An Outline of Set Theory 
by lames M. Henle 

Demography Through Problems 
by Nathan Keyjitz and lohn A. Beekman 

(continued after index) 



Unsolved Problems in Intuitive Mathematics 
Volume I 

Richard K. Guy 

Unsolved Problems 
in Number Theory 

Second Edition 

With 18 figures 

Springer Science+Business Media, LLC 



Richard K. Guy 
Department of Mathematics and Statistics 
The University of Calgary 
Calgary, Alberta 
Canada, T2N1N4 

AMS Classification (1991): 11-01 

Library of Congress Cataloging-in-Publication Data 
Guy, Richard K. 

Unsolved problems in number theory / Richard K. Guy. 
p. cm. ~ (Problem books in mathematics) 

Includes bibliographical references and index. 
ISBN 978-1-4899-3587-8 
1. Number theory. I. Title. II. Series. 

QA241.G87 1994 
512".7—dc20 94-3818 

© Springer Science+Business Media New York 1994 
Originally published by Springer-Verlag New York, Inc. in 1994 
Softcover reprint of the hardcover 2nd edition 1994 

All rights reserved. This work may not be translated or copied in whole or in part without the writ
ten permission of the publisher (Springer Science+Business Media, LLC), 
except for brief excerpts in connection with reviews or scholarly analysis. Use in 
connection with any form of information storage and retrieval, electronic adaptation, computer soft
ware, or by similar or dissimilar methodology now known or hereafter developed is forbidden. 
The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the 
former are not especially identified, is not to be taken as a sign that such names, as understood by 
the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone. 

Production managed by Karen Phillips; manufacturing coordinated by Vincent Scelta. 
Photocomposed pages prepared from the author's TgX files. 
9 8 7 6 5 4 3 2 1 

ISBN 978-1-4899-3587-8 ISBN 978-1-4899-3585-4 (eBook) 
DOI 10.1007/978-1-4899-3585-4 



Preface to the First Edition 

To many laymen, mathematicians appear to be problem solvers, people 
who do "hard sums". Even inside the profession we dassify ouselves as 
either theorists or problem solvers. Mathematics is kept alive, much more 
than by the activities of either dass, by the appearance of a succession 
of unsolved problems, both from within mathematics itself and from the 
increasing number of disciplines where it is applied. Mathematics often 
owes more to those who ask questions than to those who answer them. 
The solution of a problem may stifte interest in the area around it. But 
"Fermat 's Last Theorem", because it is not yet a theorem, has generated a 
great deal of "good" mathematics, whether goodness is judged by beauty, 
by depth or by applicability. 

To pose good unsolved problems is a difficult art. The balance between 
triviality and hopeless unsolvability is delicate. There are many simply 
stated problems which experts tell us are unlikely to be solved in the next 
generation. But we have seen the Four Color Conjecture settled, even if we 
don't live long enough to learn the status of the Riemann and Goldbach 
hypotheses, of twin primes or Mersenne primes, or of odd perfect numbers. 
On the other hand, "unsolved" problems may not be unsolved at all, or 
may be much more tractable than was at first thought. 

Among the many contributions made by Hungarian mathematician 
Erdös Pal, not least is the steady flow of well-posed problems. As if these 
were not incentive enough, he offers rewards for the first solution of many 
of them, at the same time giving his estimate of their difficulty. He has 
made many payments, from $1.00 to $1000.00. 

One purpose of this book is to provide beginning researchers, and others 
who are more mature, but isolated from adequate mathematical stimulus, 
with a supply of easily understood, if not easily solved, problems which they 
can consider in varying depth, and by making occasional partial progress, 
gradually acquire the interest, confidence and persistence that are essential 
to successful research. 

But the book has a much wider purpose. It is important for students 
and teachers of mathematics at all levels to realize that although they are 
not yet capable of research and may have no hopes or ambitions in that 
direction, there are plenty of unsolved problems that are weIl within their 
comprehension, some of which will be solved in their lifetime. Many ama
teurs have been attracted to the subject and many successful researchers 
first gained their confidence by examining problems in euclidean geometry, 
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vi Preface to the First Edition 

in number theory, and more recently in combinatorics and graph theory, 
where it is possible to understand questions and even to formulate them 
and obtain original results without a deep prior theoretical knowledge. 

The idea for the book goes back some twenty years, when I was im
pressed by the circulation of lists of problems by the late Leo Moser and 
co-author Hallard Croft, and by the articles of Erdös. Croft agreed to let 
me help hirn amplify his collection into a book, and Erdös has repeatedly 
encouraged and prodded uso After some time, the Number Theory chapter 
swelled into a volume of its own, part of aseries wh ich will contain a vol
urne on Geometry, Convexity and Analysis, written by Hallard T. Croft, 
and one on Combinatorics, Graphs and Games by the present writer. 

References, sometimes extensive bibliographies, are collected at the end 
of each problem or article surveying a group of problems, to save the reader 
from turning pages. In order not to lose the advantage of having all refer
ences collected in one alphabeticallist, we give an Index of Authors, from 
which particular papers can easily be located provided the author is not 
too prolific. Entries in this index and in the General Index and Glossary 
of Symbols are to problem numbers instead of page numbers. 

Many people have looked at parts of drafts, corresponded and made 
helpful comments. Some of these were personal friends who are no longer 
with us: Harold Davenport, Hans Heilbronn, Louis Mordell, Leo Moser, 
Theodor Motzkin, Alfred Renyi and Paul Tunin. Others are H. L. Abbott, 
J. W. S. Cassels, J. H. Conway, P. Erdös, Martin Gardner, R. 1. Gra
harn, H. Halberstarn, D. H. and Emma Lehmer, A. M. Odlyzko, Carl 
Pomerance, A. Schinzel, J. L. Selfridge, N. J. A. Sloane, E. G. Straus, 
H. P. F. Swinnerton-Dyer and Hugh Williams. A grant from the National 
Research Council of Canada has facilitated contact with these and many 
others. The award of a Killam Resident Fellowship at the University of Cal
gary was especially helpful during the writing of a final draft' The technical 
typing was done by Karen McDermid, by Betty Teare and by Louise Guy, 
who also helped with the proof-reading. The staff of Springer-Verlag in 
New York has been courteous, competent and helpful. 

In spite of all this help, many errors remain, for which Iassume reluctant 
responsibility. In any case, if the book is to serve its purpose it will start 
becoming out of date from the moment it appears; it has been becoming out 
of date ever since its writing began. I would be glad to hear from readers. 
There must be many solutions and references and problems which I don't 
know about. I hope that people will avail themselves of this clearing house. 
A few good researchers thrive by rediscovering results for themselves, but 
many of us are disappointed when we find that our discoveries have been 
anticipated. 

Calgary 81-08-13 Richard K. Guy 



Preface to the Second Edition 

Erdös recalls that Landau, at the International Congress in Cambridge in 
1912, gave a talk about primes and mentioned four problems (see Al, A5, 
Cl below) which were unattackable in the present state of science, and says 
that they still are. On the other hand, since the first edition of this book, 
some remarkable progress has been made. Fermat's last theorem (modulo 
some holes that are expected to be filled in), the Mordell conjecture, the 
infinitude of Carmichael numbers, and a host of other problems have been 
settled. 

The book is perpetually out of date; not always the 1700 years of one 
statement in 01 in the first edition, but at least a few months between 
yesterday's entries and your reading of the first copies off the press. To 
ease comparison with the first edition, the numbering of the sections is 
still the same. Problems which have been largely or completely answered 
are B47, 02, 06, 08, 016, 026, 027, 028, E15, F15, F17 & F28. 
Related open questions have been appended in some cases, but in others 
they have become exercises, rather than problems. 

Two of the author's many idiosyncrasies are mentioned here: the use of 
the ampersand (&) to denote joint work and remove any possible ambiguity 
from phrases such as ' ... follows from the work of Gauß and Erdös & Guy'j 
and the use of the notation 

. ? l, ......... . 

borrowed from the Hungarians, for a conjectural or hypothetical statement. 
This could have alleviated some anguish had it been used by the weIl in
tentioned but not very weIl advised author of an introductory calculus 
text. A student was having difliculty in finding the derivative of a product. 
Frustrated myself, I asked to see the student's text. He had highlighted a 
displayed formula stating that the derivative of a product was the product 
of the derivatives, without noting that the context was 'Why is ... not the 
right answer?' 

The threatened volume on Unsolved Problems in Geometry has ap
peared, and is already due for reprinting or for a second edition. 

It will be clear from the text how many have accepted my invitation 
to use this as a clearing house and how indebted I am to correspondents. 
Extensive though it is, the following list is far from complete, but I should 
at least offer my thanks to Harvey Abbott, Arthur Baragar, Paul Bate
man, T. G. Berry, Andrew Bremner, John Brillhart, R. H. Buchholz, 
Duncan BueIl, Joe Buhler, Mitchell Dickerman, Hugh Edgar, Paul Erdös, 
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viii Preface to the Second Edition 

Steven Finch, A viezri Fraenkel, David Gale, Sol Golomb, Ron Graham, Sid 
Graham, Andrew Granville, Heiko Harborth, Roger Heath-Brown, Martin 
Helm, Gerd Hofmeister, Wilfrid Keller, Arnfried Kemnitz, Jeffery Lagarias, 
Jean Lagrange, John Leech, Dick & Emma Lehmer, Hendrik Lenstra, Hugh 
Montgomery, Peter Montgomery, Shigeru Nakamura, Richard Nowakows
ki, Andrew Odlyzko, Richard Pinch, Carl Pomerance, Aaron Potler, Her
man te Riele, Raphael Robinson, 0ystein Rj/ldseth, K. R. S. Sastry, An
drzej Schinzel, Reese Scott, John Selfridge, Ernst SeImer, Jeffery Shallit, 
Neil Sloane, Stephane Vandemergel, Benne de Weger, Hugh Williams, Jeff 
Young and Don Zagier. I particularly miss the impeccable proof-reading, 
the encyclopedic knowledge of the literature, and the clarity and ingenuity 
of the mathematics of John Leech. 

Thanks also to Andy Guy for setting up the electronic framework which 
has made both the author's and the publisher's task that much easier. The 
Natural Sciences and Engineering Research Council of Canada continue to 
support this and many other of the author's projects. 

Calgary 94-01-08 Richard K. Guy 
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Introduction 

Number theory has fascinated both the amateur and the professional for 
a longer time than any other branch of mathematics, so that much of it is 
now of considerable technical difficulty. However, there are more unsolved 
problems than ever before, and though many of these are unlikely to be 
solved in the next generation, this probably won't deter people from trying. 
They are so numerous that they have already filled more than one volume: 
the present book is just a personal sampIe. 

Some good sources of problems in number theory were listed in the 
Introduction to the first edition, some of which are repeated here, along 
with more recent references. 

Paul Erdös, Problems and results in combinatorial number theory III, Springer 
Lecture Notes in Math., 626(1977) 43-72;MR 57 #12442. 

Paul Erdös, A survey of problems in combinatorial number theory, in Combina
torial Mathematics, Optimal Designs and their Applications (Proc. Symp. 
Colo. State Univ. 1978) Ann. Discrete Math., 6(1980) 89-115. 

P. Erdös & R. L. Graham, Old and New Problems and Results in Combinatorial 
Number Theory, Monographies de l'Enseignement Math. No. 28, Geneva, 
1980. 

P81 Erdös & Andnis Scirközy, Some solved and unsolved problems in combinatorial 
number theory, Math. Slovaca, 28(1978) 407-421; MR 80i:10001. 

P. Erdös, Problems and results in number theory, in Halberstarn & Hooley (eds) 
Recent Progress in Analytic Number Theory, Vol. 1, Academic Press, 1981, 
1-13. 

H. Fast & S. Swierczkowski, The New Scottish Book, Wrodaw, 1946-1958. 
Heini Halberstarn, Some unsolved problems in higher arithmetic, in Ronald Dun

can & Miranda Weston-Smith (eds.) The Encyclopaedia o/Ignorance, Perg
amon, Oxford & New York, 1977, 191-203. 

Victor Klee & Stan Wagon, Old and New Unsolved Problems in Plane Geometry 
and Number Theory, Math. Assoc. of Amer. Dolciani Math. Expositions, 
11(1991). 

Proceedings 0/ Number Theory Con/erence, Univ. of Colorado, Boulder, 1963. 
Report 0/ Institute in the Theory 0/ Numbers, Univ. of Colorado, Boulder, 1959. 
Joe Roberts, Lure 0/ the Integers, Math. Assoc. of America, Spectrum Series, 

1992. 
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2 Introduction 

Daniel Shanks, Solved and Unsolved Problems in Number Theory, Chelsea, New 
York, 2nd ed. 1978; MR 80e:10003. 

W. Sierpinski, A selection 0/ Problems in the Theory 0/ Numbers, Pergamon, 
1964. 

Robert D. Silverman, A perspective on computational number theory, in Com
puters and Mathematics, Notices Amer. Math. Soc., 38(1991) 562-568. 

S. Ulam, A Collection 0/ Mathematical Problems, Interscience, New York, 1960. 

Throughout this volume, "number" means natural number, Le., 
0,1,2, ... 

and c is an absolute positive constant, not necessarily taking the same value 
at each appearance. We use Donald Knuth's now familiar "floor" (lJ) and 
"ceiling" (r 1) symbols for "the greatest integer not greater than" and "the 
least integer not less than." A less familiar symbol may be "m 1. n" for 
"m is prime to n" or "gcd(m, n) = 1." 

The book is partitioned, somewhat arbitrarily at times, into six sections: 

A. Prime numbers 
B. Divisibility 
C. Additive number theory 
D. Diophantine equations 
E. Sequences of integers 
F. None of the above. 



A. Prime Numbers 

We can partition the positive integers into three classes: 

the unit 1 

the primes 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, ... 

the composite numbers 4, 6, 8, 9, 10, 12, 14, 15, 16, ... 

A number greater than 1 is prime if its only positive divisors are 1 and 
itself; otherwise it 's composite. Primes have interested mathematicians 
at least since Euclid, who showed that there are infinitely many. 

Denote the n-th prime by Pn, e.g. Pi = 2, P2 = 3, P99 = 523; and the 
number of primes not greater than x by 1T(X), e.g., 1T(2) = 1, 1T(3!) = 2, 
1T(1000) = 168, 1T(4· 1016 ) = 1075292778753150. The greatest common 
divisor (gcd) of m and n is denoted by (m, n), e.g., (36,66) = 6, (14,15) = 
1, (1001,1078) = 77. If (m, n) = 1, we say that m and n are coprime and 
write m 1.. n; for example 182 1.. 165. 

Dirichlet's theorem tells us that there are infinitely many primes in any 
arithmetic progression, 

a, a + b, a + 2b, a + 3b, 

provided a 1.. b. An article, giving a survey of problems about primes and 
a number of further references, is 

A. Schinzel & W. Sierpinski, Sur certains hypotheses concernant les nombres 
premiers, Acta Arith., 4(1958) 185-208; erratum 5(1959) 259; MR 21 #4936; 
and see 7(1961) 1-8. 

Table 7 (D 27) can be used as a table of primes< 1000; an entry 1, 3, 
5 or 7 indicates a prime in that residue class (see A4) modulo 8. 

The general problem of determining whether a large number is prime or 
composite, and in the latter case of determining its factors, has fascinated 
number theorists down the ages. With the advent of high speed computers, 
considerable advances have been made, and a special stimulus has recently 
been provided by the application to cryptanalysis. Some other references 
appear after Problem A3 and in the first edition of this book. 
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4 A. Prime Numbers 

William Adams & Daniel Shanks, Strong primality tests that are not sufficient, 
Math. Comput., 39(1982) 255-300. 

Richard K. Guy, How to factor a number, Congressus Numerantium XVI, Proc. 
5th Manitoba Conf. Numer. Math., Winnipeg, 1975, 49-89; MR 53 #7924. 

Wilfrid Keller, Woher kommen die größten derzeit bekannten Primzahlen? Mitt. 
Math. Ges. Hamburg, 12(1991) 211-229; MR 92j:11006. 

Arjen K. Lenstra & Mark S. Manasse, Factoring by electronic mail, in Advances 
in Cryptology-EUROCRYPT'89, Springer Leet. Notes in Comput. Sei., 
434(1990) 355-371; MR 9li:11182. 

Hendrik W. Lenstra, Factoring integers with elliptic curves, Ann. 0/ Math.(2), 
126(1987) 649-673; MR 89g:11125. 

Hendrik W. Lenstra & Carl Pomerance, A rigorous time bound for factoring 
integers, J. Amer. Math. Soe., 5(1992) 483-916; MR 92m:11145. 

G. L. Miller, Riemann's hypothesis and tests for primality, J. Comput. System 
Sei., 13(1976) 300-317; MR 58 #470ab. 

Peter Lawrence Montgomery, An FFT extension of the elliptic curve method of 
factorization, PhD dissertation, UCLA, 1992. 

J. M. Pollard, Theorems on factoring and primality testing, Proe. Cambridge 
Philos. Soe., 76(1974) 521-528; MR 50 #6992. 

J. M. Pollard, A Monte Carlo method for factorization, BIT, 15(1975) 331-334; 
MR 52 #13611. 

Carl Pomerance, Recent developments in primality testing, Math. Intelligeneer, 
3(1980/81) 97-105. 

Carl Pomerance, Notes on Primality Testing and Factoring, MAA Notes 4(1984) 
Math. Assoe. of America, Washington DC. 

Carl Pomerance (editor), Cryptology and Computational Number Theory, Proe. 
Symp. Appl. Math., 42 Amer. Math. Soc., Providence, 1990; MR 91k: 11113. 

Paulo Ribenboim, The Book 0/ Prime Number Reeords, Springer-Verlag, New 
York,1988. 

Paulo Ribenboim, The Little Book 0/ Big Primes, Springer-Verlag, New York, 
1991. 

Hans RieseI, Wie schnell kann man Zahlen in Faktoren zerlegen? Mitt. Math. 
Ges. Hamburg, 12(1991) 253-260. 

R. Rivest, A. Shamir & L. Adlernan, A method for obtaining digital signatures 
and public key cryptosystems, Communieations A.C.M., Feb. 1978. 

R. Solovay & V. Strassen, A fast Monte-Carlo test for primality, SIAM J. Com
put., 6(1977) 84-85; erratum 7(1978) 118; MR 57 #5885. 

Jonathan Sorenson, Counting the integers cyclotomic methods can factor, Com
put. Sei. Teeh. Report, 919, Univ. of Wisconsin, Madison, March 1990. 

H. C. Williams & J. S. Judd, Some algorithms for prime testing using generalized 
Lehmer functions, Math. Comput., 30(1976) 867-886. 

Al Prime values of quadratic functions. 

Are there infinitely many primes of the form a2 + 1 ? Probably so, and in 
fact Hardy and Littlewood (their conjecture E) guessed that the number, 
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P(n), of such primes less than n, was asymptotic to cv'n/ In n, 

P(n) '" cv'ii/lnn ? 

Le., that the ratio of P(n) to v'n/ In n tends to c as n tends to infinity. The 
constant c is 

where (-;1) is the Legendre symbol (see F5) and the product is taken 
over all odd primes. They make similar conjectures, differing only in the 
value of c, for the number of primes represented by more general quadratic 
expressions. But we don't know of any integer polynomial, of degree greater 
than one, for which it has been proved that it takes an infinity of prime 
values. Is there even one prime a2 + b for each b > 0 ? Sierpinski has shown 
that for every k there is absuch that there are more than k primes of the 
form a2 + b. 

Iwaniec has shown that there are infinitely many n for which n2 + 1 is the 
product of at most two primes, and his results extend to other irreducible 
quadratics. 

If P(n) is the largest prime factor of n, Maurice Mignotte has shown 
that P(a2 + 1) ~ 17 if a ~ 240. Note that 2392 + 1 = 2· 134 (yet another 
property of 239). It has been known for 50 years that P(a2 + 1) -t 00 

with a. 
Ulam and others noticed that the pattern formed by the prime numbers 

when the sequence of numbers is written in a "square spiral" seems to favor 
diagonals which correspond to certain "prime-rich" quadratic polynomials. 
For example the main diagonal of Figure 1 corresponds to Euler's famous 
formula n2 + n + 41. 

There are some results for expressions (not polynomials!) of degree 
greater than 1, starting with that of Pyateckii-Sapiro, who proved that the 
number of primes of the form L nC J in the range 1 < n < x is 
(1 + o(1))x/(1 + c) lnx if 1 ::; c ::; i~. This range has been successively 
extended to 1~, ~~, ~~~, ~~ and i~ by Kolesnik, Graham and Leitmann 
independently, Heath-Brown, Kolesnik again, and by Liu & Rivat. 

Gilbert W. Fung & Hugh Cowie Williams, Quadratic polynomials which have 
a high density of prime values, Math. Comput., 55(1990) 345-353; MR 
90j:ll090. 

Martin Gardner, The remarkable lore of prime numbers, Scientijic Amer., 210 
#3 (Mar. 1964) 120-128. 

G. H. Hardy & J. E. Littlewood, Some problems of 'partitio numerorum' III: on 
the expression of a number as a sum of primes, Acta Math., 44(1922) 1-70. 
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421 420419418 417 416 415 414 413 412 411 410 409 408 407 406 405 404 403 402 
422347346 345 344 343 342 341 340339 338337336335 334 333 332331330401 
423 348281280279 278277276275 274 273 272 271270 269 268 267266 329 400 
424 349 282 223 222 221 220 219 218 217 216 215 214 213 212 211 210 265 328 399 
425 350 283 224 173 172 171 170 169 168 167 166 165 164 163 162 209 264 327 398 
426 351 284225 174131130 129 128127126 125 124 123 122 161 208263326397 
427 352 285 226 175 132 97 96 95 94 93 92 91 90 121 160 207 262 325 396 
428 353 286 227 176 133 98 71 70 69 68 67 66 89 120 159 206 261 324 395 
429 354 287 228 177 134 99 72 53 52 51 50 65 88 119 158 205 260 323 394 
430 355 288 229 178 135 100 73 54 43 42 49 64 87 118 157 204 259 322 393 
431 356 289 230 179 136 101 74 55 44 41 48 63 86 117 156 203 258 321 392 
432 357 290 231 180137102 75 56 45 46 47 62 85 116 155 202257320 391 
433 358 291 232 181138 103 76 57 58 59 60 61 84 115 154 201 256 319 390 
434 359 292 233 182 139 104 77 78 79 80 81 82 83 114 153 200 255 318 389 
435 360293234 183 140 105 106107108109110 111 112113152199254317388 
436 361 294 235 184 141 142 143 144 145 146 147 148149150151198 253 616 387 
437 362 295 236 185 186 187 188 189 190191192193194 195 196197252 315 386 
438 363 296 237 238239240241 242 243 244 245 246 247 248 249 250251314 385 
439 364 297 298 299 300 301 302 303 304 305 306307308 309 310 311 312 313 384 
440365 366367368369370 371 372 373 374375 376 377378379380 381 382383 

Figure 1. Primes (in bold) Form Diagonal Patterns. 

D. R. Heath-Brown, The Pyateckii-Sapiro prime number theorem, J. Number 
Theory, 16(1983) 242-266. 

D. R. Heath-Brown, Zero-free regions for Dirichlet L-functions, and the least 
prime in an arithmetic progression, Proc. London Math. Soc.(3) 64(1992) 
265-338. 

Henryk Iwaniec, Almost-primes represented by quadratic polynomials, Invent. 
Math., 47(1978) 171-188; MR 58 #5553. 

G. A. Kolesnik, The distribution of primes in sequences of the form [ne], Mat. 
Zametki(2), 2(1972) 117-128. 

G. A. Kolesnik, Primes of the form [ne], Paeifie J. Math.(2), 118(1985) 437-447. 
D. Leitmann, Abschätzung trigonometrischer Summen, J. reine angew. 

Math., 317(1980) 209-219. 
D. Leitmann, Durchschnitte von Pjateckij-Shapiro-Folgen, Monatsh. Math., 

94(1982) 33-44. 
H. Q. Liu & J. Rivat, On the Pyateckii-Sapiro prime number theorem, Bull. 

London Math. Soe., 24(1992) 143-147. 
Maurice Mignotte, P(x2 + 1) ~ 17 si x ~ 240, C. R. Acad. Sei. Paris Sero I 

Math., 301(1985) 661-664; MR 87a:11026. 
earl Pomerance, A note on the least prime in an arithmetic progression, J. Num

ber Theory, 12(1980) 218-223. 
I. I. Pyateckii-Sapiro, On the distribution of primes in sequences of the form 

[f(n)] (Russian), Mat. Sbornik N.S., 33(1953) 559-566; MR 15, 507. 
Daniel Shanks, On the conjecture of Hardy and Littlewood concerning the num

ber of primes of the form n 2 + a, Math. Comput., 14(1960) 321-332. 
W. Sierpinski, Les binomes x2 + n et les nombres premiers, Bull. Soe. Roy. Sei. 

Liege, 33(1964) 259-260. 
E. R. Sirota, Distribution of primes of the form p = [ne] = [td ] in arithmetic 

progressions (Russian), Zap. Nauchn. Semin. Leningrad Otdel. Mat. Inst. 
Steklova, 121(1983) 94-102; Zbl. 524.10038. 



A2. Primes connected with factorials. 

A2 Primes connected with factorials. 

Are there infinitely many primes of the form n! ± 1 or of the form 

k 

Xk = 1 + I1Pi 
i=l 

7 

or of the form Xk - 2? Buhler, Crandall & Penk have shown that n! + 1 
is prime for n = 1, 2, 3, 11, 27, 37, 41, 73, 77, 116, 154, 320, 340, 399 and 
427; that n! - 1 is prime for n = 3, 4, 6, 7, 12, 14, 30, 32, 33, 38, 94, 166, 
324, 379 and 469 and for no other n < 546; that Xk is prime for Pk = 2, 
3, 5, 7, 11, 31, 379, 1019, 1021 and 2657 and for no other Pk < 3088; and 
that Xk - 2 is prime for Pk = 3,5, 11, 13,41,89,317,337,991, 1873 and 
2053, and is a probable prime (Le. final tests had not been carried out) for 
Pk = 2377. Harvey Dubner has discovered the primes 872! + 1 and 1477! + 1 
and shown that X k is prime for Pk = 3229, 4547 and 4787. It is also prime 
for Pk = 11549 and 13649. 

Let qk be the least prime greater than Xk. Then R. F. Fortune conjec
tures that qk - Xk + 1 is prime for all k. It is dear that it is not divisible by 
the first k primes, and Selfridge observes that the truth of the conjecture 
would follow from Schinzel's formulation of Cramer's conjecture, that for 
x> 8 there is always a prime between x and x + (Inx)2. Stan Wagon has 
calculated the first 100 fortunate primes: 

3 5 7 13 23 17 19 23 37 61 67 61 71 47 107 59 61 109 89 103 
79151197101103233223127223 191163229643239157167439239199191 
199383233751313773607313383 293443331283277271 401 307331379491 
331311397331353419421883 547 13814574573734214091061523499619727 
4575094399114618236136171021 523941653601877607631 733757877641 

under the assumption that the very large probable primes involved are gen
uine primes. The answers to the quest ions are probably "yes", but it does 
not seem conceivable that such conjectures will come within reach either of 
computers or of analytical tools in the foreseeable future. Schinzel's conjec
ture has been attributed to Cramer, but Cramer conjectured (see reference 
at A8) 

1· Pn+1 - Pn 
Imsup (1 )2 = 1 
n ..... oo npn 

? 

Schinzel notes that this doesn't imply the existence of a prime between x 
and x + (ln x) 2, even for sufficiently large x. 

More hopeful, but still difficult, is the following conjecture of Erdös and 
Stewart: are I! + 1 = 2, 2! + 1 = 3, 3! + 1 = 7, 4! + 1 = 52, 5! + 1 = 112 

the only cases where n! + 1 = PkP~+l and Pk-l ::; n < Pk? [Note that 
(a,b) = (1,0), (1,0), (0,1), (2,0) and (0,2) in these five cases.] 

Erdös also asks if there are infinitely many primes P for which P - k! 
is composite for each k such that 1 ~ k! < p; for example, P = 101 and 
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p = 211. He suggests that it may be easier to show that there are infinitely 
many integers n (l! < n ~ (l + I)!) all of whose prime factors are greater 
than l, and for which all the numbers n - k! (1 ~ k ~ l) are composite. 

I. O. Angell & H. J. Godwin, Some factorizations of IOn ± 1, Math. Comput., 
28(1974) 307-308. 

Alan Borning, Some results for k!±l and 2·3·5··· p±l, Math. Comput., 26(1972) 
567-570. 

J. P. Buhler, R. E. Crandall & M. A. Penk, Primes of the form n! ± 1 and 
2 . 3 . 5· .. p ± 1, Math. Comput., 38(1982) 639-{j43; corrigendum, Wilfrid 
Keller, 40(1983) 727; MR 83c:10006, 85b:11119. 

Harvey Dubner, Factorial and primorial primes, J. Reereational Math., 19 (1987) 
197-203. 

Martin Gardner, Mathematical Games, Sei. Amer., 243#6(Dec. 1980) 18-28. 
Solomon W. Golomb, The evidence for Fortune's conjecture, Math. Mag., 54(1981) 

209-210. 
S. Kravitz & D. E. Penney, An extension of Trigg's table, Math. Mag., 48(1975) 

92-96. 
Mark Templer, On the primality of k! + 1 and 2 * 3 * 5 * ... * p + 1, M ath. Comput., 

34(1980) 303-304. 

A3 Mersenne primes. Repunits. Fermat 
numbers. Primes of shape k . 2n + 2. 

Primes of special form have been of perennial interest, especially the Mer
senne primes 2P - 1. Here p is necessarily prime, but that is not a 
sufficient condition! 211 - 1 = 2047 = 23·89. They are connected with 
perfect numbers (see BI). 

The powerful Lucas-Lehmer test, in conjunction with successive gen
erations of computers, and more sophisticated techniques in using them, 
continues to add to the list of primes p for which 2P - 1 is also prime: 

2,3,5,7,13, 17, 19,31,61,89, 107, 127, 521, 607,1279,2203, 
2281,3217,4253,4423,9689,9941, 11213, 19937, 21701, 

23209,44497,86243,110503,132049,216091,756839, 859433, .... 

The number of Mersenne primes is undoubtedly infinite, but proof is 
again hopelessly beyond reach. Suppose M(x) is the number of primes p ~ 
x for which 2P -1 is prime. Find a convincing heuristic argument for the size 
of M(x). Gillies gave one suggesting that M(x) rv clnx. H. W. Lenstra, 
Pomerance and Wagstaff all believe this and in fact suggest that 

M(x) '" e'Y log x ? 

where the log is to base 2. 
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The largest known prime is usually a Mersenne prime, but for a while 
the record was 391581 . 2216193 - 1, discovered by J. Brown, L.C. Noll, 
B. Parady, G. Smith, J. Smith & S. Zarantonello. In late March, 1992 
this was beaten by the penultimate item in the above list, discovered by 
Slowinski & Gage. 

D. H. Lehmer puts SI = 4, Sk+l = S~ - 2, supposes that 2P - 1 is a 
Mersenne prime, not es that Sp-2 == 2(p+l)/2 or _2(p+l)/2 mod 2P - 1 and 
asks: which? 

Selfridge conjectures that if n is a prime of the form 2 k ± 1 or 2 2k ±3, then 
2n - 1 and (2n + 1)/3 are either both prime or both composite. Moreover 
if both are prime, then n is of one of those forms. Is this an example of the 
Strong Law of Small Numbers? Dickson, on p. 28 of Vol. 1 of his History, 
says: 

In a letter to Tannery (l'Intermediaire des math., 2(1895) 
317) Lucas stated that Mersenne (1644, 1647) implied that a 
necessary and sufficient condition that 2P - 1 be a prime is that 
p be a prime of one of the forms 22n + 1, 22n ± 3, 22n+ l - 1. 
Tannery expressed his belief that the theorem was empirical 
and due to Frenicle, rather than to Fermat. 

If p is a prime, is 2P - 1 always squarefree (does it never contain a 
repeated factor)? This seems to be another unanswerable question. It 
is safe to conjecture that the answer is "No!" This could be settled by 
computer if you were lucky. As D. H. Lehmer has said about various 
factoring methods, "Happiness is just around the corner". Selfridge puts 
the computational difficulties in perspective by proposing the problem: find 
fifty more numbers like 1093 and 3511. [Fermat's theorem teIls us that if p 
is prime, then p divides 2P - 2; the primes 1093 and 3511 are the only ones 
less than 6 . 109 for which p2 divides 2P - 2.] It is not known if there are 
infinitely many primes p for which p2 divides 2P - 2. It is not even known if 
there are infinitely many p for which p2 does not divide 2P - 2 - although 
this can be deduced from the very powerful "ABC conjecture" (see B17). 

The so-called repunits, (lOP -1) /9, are prime for p = 2, 19, 23, 317 and 
1031. Repunits other than 1 are known never to be squares and Rotkiewicz 
has shown that they are not cubes. When are they squarefree? The primes 
3, 487 and 56598313 are the only ones less than 232 for which p2 divides 
lOP -10. Pet er Montgomery lists cases where p2 divides aP- l -1 for a < 100 
and p < 232 . 

Selfridge asks if the sequence (in decimal notation) 

1, 12, 123, 1234, 12345, 123456, 1234567, 12345678, 123456789, 

12345678910, 1234567891011, 123456789101112, ... 

contains infinitely many primes. The question can also be asked for other 
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scales of notation; for example 

123456101112137 = 13187066607710 is prime. 

Wagstaff observes that the only primes< 180 for which (pP -1)/(P-l) 
is prime are p = 2, 3, 7, 19 and 31; for (PP + 1)/(P + 1) they are p = 3, 5, 
17 and 157. 

The Fermat numbers, Fn = 22n + 1 are also of continuing interest; 
they are prime for 0 ::; n ::; 4 and composite for 5 ::; n ::; 21 and for 
many larger values of n. Hardy & Wright give a heuristic argument which 
suggests that only a finite number of them are prime. Selfridge would like 
to see this strengthened to support the conjecture that all the rest are 
composite. 

It has been conjectured that the Fermat numbers are squarefree. It was 
verified by Gostin & McLaughlin that 82 of the 85 then known factors of 
the 71 known composite Fermat numbers (factors of Fm for m = 3310, 4724 
and 6537 were not so tested) were not repeated. Wilfrid Keller and Hiromi 
Suyama have found several new factors of Fermat numbers. The table of 
88 prime factors k . 2n + 1 of 22m + 1 given on p. Ix of the Introduction 
of "the Cunningham project" (see the Brillhart et al. ref. below) expanded 
to 114 entries in the second edition, and has at least 150 at the time of 
writing. Lenstra, Lenstra, Manasse & Pollard have factored the ninth, and 
R. P. Brent the eleventh, Fermat numbers completely. People interested in 
factoring large numbers should make contact with Samuel S. Wagstaff. 

Because of their special interest as potential factors of Fermat numbers, 
and because proofs of their primality are comparatively easy, numbers of 
the form k· 2n + 1 have received special attention, at least for small values 
of k. For example, large primes were found by Harvey Dubner and Wilfrid 
Keller, the record on 84-09-05 for a non-Mersenne prime being (k, n) = 
(5,23473) by Keller. Another of his discoveries, (k, n) = (289,18502) is 
amusing in that it may be written as (18496,18496), a Cullen prime (B20) 
and as (17.29251 )2 + 1, a prime of shape a2 + 1 (Al). 

As we mentioned, the record has since been beaten with a prime of 
shape k . 2n - 1 with (k, n) = (391581,216193). See also B21. 

Hugh Williams has found, for r = 3, 5, 7 and 11, all values of n ::; 500 
for which (r - l)rn - 1 is prime: 

r=3 
r=5 
r=7 
r = 11 

n= 1,2,3,7,8,12,20,23,27,35,56,62,68,131,222,384,387 
n= 1,3,9,13,15,25,39,69,165,171,209,339 
n= 1,2,7,18,55,69,87,119,141,189,249,354 
n= 1,3,37,119,255,355,371,497 

We are very unlikely to know for sure that the Fibonacci sequence 

1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597, ... , 
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where Ul = U2 = 1 and UnH = Un +Un-l, contains infinitely many primes. 
(Hugh Williams has found the large prime Fibonacci number U2971') Sim
ilarly for the related Lucas sequence 

1,3,4,7,11,18,29,47,76,123,199,322,521,843,1364, ... , 

and most other Lucas-Lehmer sequences (with Ul -.l U2) defined by second
order recurrence relations. However, Graham has shown that the sequence 
with 

Uo = 1786 772701 928802 632268 715130 455793 

Ul = 1059 683225 053915 111058 165141 686995 
contains no primes at all! Knuth notes that Graham's numbers should have 
been given as 

Uo = 331635635998274737472200656430763 

Ul = 1510 028911 088401 971189590305498785 
and gives the smaller example 

Ul = 49463435743205655, U2 = 62638280004239857 
Raphael Robinson considers the Lucas sequence (sometimes called the 

Pell sequence) Uo = 0, Ul = 1, Un+l = 2un + Un-l and defines the 
primitive part, Ln, by 

Un = rr L d 

dln 

He notes that L 7 = 132 and L 30 = 312 and asks if there is any larger n for 
which Ln is a square. 
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powers, Contemp. Math., 22. Amer. Math. Soc., Providence RI, 1983, 1988; 
MR 84k:10005, 90d:11009. 
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12 A. Prime Numbers 

John Brillhart, J. Tonascia & P. Weinberger, On the Fermat quotient, in Com
puters in Number Theory, Academic Press, 1971, 213-222. 

W. N. Colquitt & L. Welsh, A new Mersenne prime, Math. Comput., 56(1991) 
867-870; MR 91h:ll006. 

Harvey Dubner, Generalized Fermat numbers, J. Recreational Math., 18 (1985-
86) 279-280. 

Harvey Dubner, Generalized repunit primes, Math. Comput., 61 (1993) 927-930. 
John R. Ehrman, The number of prime divisors of certain Mersenne numbers, 

Math. Comput., 21(1967) 700-704; MR 36#6368. 
Donald B. Gillies, Three new Mersenne primes and a statistical theory, Math. 

Comput., 18(1964) 93-97; MR 28#2990. 
Gary B. Gostin & Philip B. McLaughlin, Six new factors of Fermat numbers, 

Math. Comput., 38(1982) 645-{l49; MR 83c:10003. 
R. L. Graharn, A Fibonacci-like sequence of composite numbers, Math. Mag., 

37(1964) 322-324; Zbl125, 21. 
Richard K. Guy, The strong law of small numbers, Amer. Math. Monthly, 95(1988) 

697-712; MR 90c:ll002 (see also Math. Mag., 63(1990) 3-20; MR 91a:11001. 
Wilfrid Keller, Factors of Fermat numbers and large primes of the form 

k.2n + 1, Math. Comput., 41(1983) 661-{l73; MR 85b:11117. 
Wilfrid Keller, New factors of Fermat numbers, Abstmcts Amer. Math. Soc., 

5(1984) 391 
Wilfrid Keller, The 17th prime ofthe form 5.2n + 1, Abstmcts Amer. Math. Soc., 

6(1985) 121. 
Donald E. Knuth, A Fibonacci-like sequence of composite numbers, Math. Mag., 

63(1990) 21-25; MR 91e:11020. 
M. Kraitchik, Sphinx, 1931, 31. 
D. H. Lehmer, Sphinx, 1931, 32, 164. 
D. H. Lehmer, On Fermat's quotient, base two, Math. Comput., 36(1981) 289-

290; MR 82e:10004. 
A. K. Lenstra, H. W. Lenstra, M. S. Manasse & J. M. Pollard, The factoriza

tion of the ninth Fermat number, Math. Comput., 61(1993) 319-349; MR 
93k:11116. 

Peter L. Montgomery, New solutions of aP - 1 == 1 mod p2, Math. Comput., 61(1993) 
361-363. 

Thorkil Naur, New integer factorizations, Math. Comput., 41(1983) 687-695; MR 
85c:11123. 

Rudolf Ondrejka, Titanic primes with consecutive like digits, J. Recreational 
Math., 17(1984-85) 268-274. 

Herman te Riele, Walter Lioen & Dik Winter, Factorization beyond the googol 
with MPQS on a single computer, CWI Quarterly, 4(1991) 69-72. 

A. Rotkiewicz, Note on the diophantine equation 1 + x + x2 + ... + xn = ym, 
Elem. Math., 42(1987) 76. 

Daniel Shanks & Sidney Kravitz, On the distribution of Mersenne divisors, Math. 
Comput., 21(1967) 97-100; MR 36:#3717. 

Hiromi Suyama, Searching for prime factors of Fermat numbers with a 
microcomputer (Japanese) bit, 13(1981) 240-245; MR 82c:10012. 

Hiromi Suyama, Some new factors for numbers of the form 2n ± 1, 82T-1O-230 
Abstmcts Amer. Math. Soc., 3(1982) 257; IV, 5(1984) 471. 



A4. The prime number race. 13 

Hiromi Suyama, The cofactor of Fts is composite, 84T-1O-299 Abstmcts Amer. 
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Samuel S. Wagstaff, Divisors of Mersenne numbers, Math. Comput., 40(1983) 
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Samuel S. Wagstaff, The period of the Bell exponential integers modulo a prime, 
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Samuel Yates, Sinkers of the Titanics, J. Recreational Math., 17(1984-85) 268-

274. 
Samuel Yates, Tracking Titanics, in The Lighter Side 0/ Mathematics, Proc. 

Strens Mem. Conf., Calgary 1986, Math. Assoe. of America, Washington 
DC, Spectrum series, 1993, 349-356. 

Jeff Young & Duncan Buell, The twentieth Fermat number is composite, Math. 
Comput., 50(1988) 261-263. 

A4 The prime number race. 
A number a is said to be congruent to c, modulo a positive number 
b, written a == c mod b, if b is a divisor of a - c. S. Chowla conjectured 
that if a ..1 b, then there are infinitely many pairs of consecutive primes 
such that Pn == Pn+1 == a mod b. The case b = 4, a = 1 follows from a 
theorem of Littlewood. Bounds between which such consecutive primes 
occur have been given in this case, and for b = 4, a = 3 by Knapowski & 
TImin. Turan observed that it would be of interest (in connexion with the 
Riemann hypothesis, for example) to discover long sequences of consecutive 
primes == 1 mod 4. Den Haan found the nine primes 

11593, 11597, 11617, 11621, 11633, 11657, 11677, 11681, 11689. 

Four sequences of 10 such primes end at 373777, 495461, 509521 and 
612217 and a sequence of 11 ends at 766373. Stephane Vandemergel has 
discovered no fewer than 16 consecutive primes of shape 4k + 1; theyare 
207622000+273,297,301,313,321, 381,409,417,421,489, 501,517, 537, 
549, 553, 561. 

Thirteen consecutive primes congruent to 3 mod 4 are 241000 + 603, 
639, 643, 651, 663, 667, 679, 687, 691, 711, 727, 739 and 771. 

If p(b, a) is the least prime in the arithmetic progression a + nb, with 
a ..1 b, then Linnik showed that there is a constant L, now called Linnik's 
constant, such that p(b, a) «: bL . Pan Cheng-Tung, Chen Jing-Run, Matti 
Jutila, Chen Jing-Run, Matti Jutila, S. Graham, Chen Jing-Run, Chen 
Jing-Run & Liu Jian-Min, and Wang Wei3 have successively improved the 
best known value of L to 5448, 777, 550, 168, 80, 36, 17, 13.5, and 8, and 
Heath-Brown has recentIy established the remarkabieresuit L ::; 5.5. 
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Elliott & Halberstam have shown that 

p(b,a) < ~(b)(Inb)l+6 

almost always. 
In the other direction it is known (see the papers of Prachar, Schinzel 

and Pomerance) that, given a, there are infinitely many values of b for 
which 

(b) cb In b In In b In In lnln b 
p ,a > (ln In In b)2 

where c is an absolute constant. 
Tunin was particularly interested in the prime number race. Let 

11'( n; a, b) be the number of primes p ::; n, p == a mod b. Is it true that for 
every a and b with a 1- b, there are infinitely many values of n for which 

for every al =f:. a mod b? Knapowski & Turan settled special cases, but the 
general problem is wide open. 

Chebyshev noted that 1I'(n; 1,3) < 1I'(n; 2, 3) and 1I'(n; 1,4) ::; 1I'(n; 3, 4) 
for small values of n. Leeeh, and independently Shanks & Wrench, dis
covered that the latter inequality is reversed for n = 26861 and Bays & 
Hudson that the former is reversed for two sets, each of more than 150 
million integers, between n = 608981813029 and n = 610968213796. 

Carter Bays & Richard H. Hudson, The appearance of tens of billions of integers 
x with 1I'24,13(X) < 1I'24,l(X) in the vicinity of 1012 , J. reine angew. Math., 
299/300(1978) 234-237; MR 57 #12418. 
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1I'3,2(X) < 11'3,1 (x), Math. Comput., 32(1978) 571-576. 
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Math. Sei., 2(1979) 111-119; MR 80h:10003. 
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14(1965) 1868-1871; MR 32 #5611. 
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orems concerning the zeros of Dirichlet's L-functions, Sei. Siniea, 20(1977) 
529-562; MR 57 #16227. 

Chen Jing-Run, On the least prime in an arithmetical progression and theorems 
concerning the zeros of Dirichlet's L-functions II, Sei. Siniea, 22(1979) 859-
889; MR 80k:10042. 

Chen Jing-Run & Liu Jian-Min, On the least prime in an arithmetic progression 
III, IV, Sei. China Sero A, 32(1989) 654-673, 792-807; MR 91h:ll090ab. 

S. Graham, On Linnik's constant, Aeta Arith., 39(1981) 163-179; MR 83d: 
10050. 

Andrew Granville & Carl Pomerance, On the least prime in certain arithmetic 
progressions, J. London Math. Soe.(2), 41(1990) 193-200; MR 9li:11119. 
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A I No. 471 (1970), 8pp.; MR 42 #5939. 

Matti Jutila, On Linnik's constant, Math. Scand., 41(1977) 45-62; MR 57 #16230. 
S. Knapowski & P. Thran, Über einige Fragen der vergleichenden Primzahl

theorie, Number Theory and Analysis, Plenum Press, New York, 1969, 157-
171. 

S. Knapowski & P. Thran, On prime numbers == 1 resp. 3 mod 4, Number Theory 
and Algebra, Academic Press, New York, 1977, 157-165; MR 57 #5926. 

John Leech, Note on the distribution of prime numbers, J. London Math. Soe., 
32(1957) 56-58. 

U. V. Linnik, On the least prime in an arithmetic progression I. The basic the
orem. 11. The Deuring-Heilbronn phenomenon. Ree. Math. [Mat. Sbornik] 
N.S., 15(57)(1944) 139-178,347-368; MR 6, 260bc. 

Pan Cheng-Thng, On the least prime in an arithmetic progression, Sei. Record 
(N.S.) 1(1957) 311-313; MR 21 #4140. 

Carl Pomerance, A note on the least prime in an arithmetic progression, J. Num
ber Theory, 12(1980) 218-223; MR 81m:10081. 

K. Prachar, Über die kleinste Primzahl einer arithmetischen Reihe, J. reine 
angew. Math., 206(1961) 3-4; MR 23 #A2399; and see Andrzej Schinzel, 
Remark on the paper of K. Prachar, 210(1962) 121-122; MR 27 #118. 

Daniel Shanks, Quadratic residues and the distribution of primes, Math. Tables 
Aids Comput., 13(1959) 272-284. 

Wang Weis, On the least prime in an arithmetic progression, Acta Math. Sini
ea(N.S.), 7(1991) 279-289; MR 93c:ll073. 

A5 Arithmetic progressions of primes. 

How long can an arithmetic progression be which consists only of primes? 
Table 1 shows progressions of n primes, a, a + d, ... , a + (n -1 )d, discovered 
by James Fry, V.A. Golubev, Andrew Moran, Paul Pritchard, S.C. Root, 
W.N. Seredinskii, S. Weintraub and Jeff Young (see the first edition for 
earlier, smaller discoveries). Of course, the common difference must have 
every prime p :::; nasa divisor (unless n = a). It is conjectured that n can 
be as large as you like. This would follow if it were possible to improve 
Szemeredi's theorem (see ElO). 
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More generally, Erdös conjectures that if {ai} is any infinite sequence of 
integers for which L: I/ai is divergent, then the sequence contains arbitrar
ily long arithmetic progressions. He offers $3000.00 for a proof or disproof 
of this conjecture. 

Table 1. Long Arithmetic Progressions of Primes. 

n d a a+(n-1)dsource 
12 30030 23143 353473 G, 1958 
13 510510 766439 6892559 S, 1965 
14 2462460 46883579 78895559 
16 9699690 53297929 198793279 
16 223092870 2236133941 5582526991 R, 1969 
17 87297210 3430751869 4827507229 W, 1977 
18 717777060 4808316343 17010526363 P 
19 4180566390 8297644387 83547839407 P 
19 13608665070 244290205469 489246176729 F, Mar 1987 
20 2007835830 803467381001 841616261771 F, Mar 1987 
20 7643355720 1140997291211 1286221049891 F, Mar 1987 
20 18846497670 214861583621 572945039351 Y&F, 87-09-01 
201140004565700 184544900622723505535754527 M&P, Nov 1990 
20 1985526543024845147147111 25222397190281 M&P, Nov 1990 
21 1419763024680 14207232112328537332814723 M&P, 90-11-30 

Sierpinski defines g(x) to be the maximum number of terms in a pro
gression of primes not greater than x. The least x, l(x), for which g(x) 
takes the values 

g(x) = 0 1 2 3 4 5 6 7 8 9 10 
is 

l(x) = 1 2 3 7 23 29 157 1307 1669 1879 2089 

Günter Löh has searched for arithmetic progressions of primes with first 
term q and length q. Examples are (q, d) = (7,150), (11, 1536160080) and 
(13, 9918821194590). 

Pomerance pro duces the "prime number graph" by plotting the points 
(n,Pn) and shows that for every k we can find k primes whose points are 
collinear. 

Grosswald has shown that there are long arithmetic progressions con
sisting only of almost primes, in the following sense. There are infinitely 
many arithmetic progressions of k terms, each term being the product of 
at most r primes, where 

r::; lklnk + 0.892k + 1J. 

He has also shown that the Hardy-Littlewood estimate is of the right order 
of magnitude for 3-term arithmetic progressions of primes. 
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Press, London, 1971,59--61; MR 42 #7609. 

P. Erdös & P. '!Uran, On certain sequences of integers, J. London Math. Soe., 
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Emil Grosswald & Peter Hagis, Arithmetic progressions consisting only of primes, 
Math. Comput., 33(1979) 1343-1352; MR 80k:10054. 
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2(1969) 214-215. 

Edgar Karst, Lists of ten or more primes in arithmetical progression, Seripta 
Math., 28(1970) 313-317. 

Edgar Karst & S. C. Root, Teilfolgen von Primzahlen in arithmetischer Progres
sion, Anz. Oesterreieh. Akad. Wiss. Math.-Naturwiss. Kl., 1972, 19-20 (see 
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network, Prae. 14th Austral. Comput. Sei. ConJ., 

Carl Pomerance, The prime number graph, Math. Comput., 33(1979) 399-408; 
MR 80d:10013. 

Paul Pritchard, Eighteen primes in arithmetic progression, Math. Comput., 41 
(1983) 697. 

Paul Pritchard, Long arithmetic progressions of primes: some old, some new, 
Math. Comput., 45(1985) 263-267. 
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A6 Consecutive primes in A.P. 

It has even been conjectured that there are arbitrarily long arithmetic 
progressions of consecutive primes, such as 

251,257,263,269 and 1741,1747,1753,1759. 

Jones, LaI & Blundon discovered the sequence 1010 + 24493 + 30k 
(0 ::; k ::; 4) of five consecutive primes, and Lander & Parkin, soon after, 
found six such primes, 121174811 + 30k (0 ::; k ::; 5). They also established 
that 9843019 + 30k (0 ::; k ::; 4) is the least progression of five terms, that 
there are 25 others less than 3 . 108 , but no others of length six. 

It is not known if there are infinitely many sets of three consecutive 
primes in arithmetic progression, but S. Chowla has demonstrated this 
without the restriction to consecutive primes. 

Harry Nelson has collected the $100.00 prize that Martin Gardner of
fered to the first discoverer of a 3 x 3 magic square whose nine entries 
are consecutive primes. These are not in arithmetic progression, of course. 
The central prime is 1480028171 and the others are this ±12, ±18, ±30 
and ±42. He found more than 20 other such squares. 

S. Chowla, There exists an infinity of 3-combinations of primes in A.P., Prac. 
Lahore Philos. Soc., 6 no. 2(1944) 15-16; MR 1,243. 

P. Erdös & A. Renyi, Some problems and results on consecutive primes, Simon 
Stevin, 21(1950) 115-125; MR 11, 644. 

M. F. Jones, M. LaI & W. J. Blundon, Statisties on certain large primes, Math. 
Comput., 21(1967) 103-107; MR 36 #3707. 

L. J. Lander & T. R. Parkin, Consecutive primes in arithmetie progression, Math. 
Comput., 21(1967) 489. 

H. L. Nelson, A consecutive prime 3 x 3 magie square, J. Recreational Math. 

A 7 Cunningham chains. 

A common method for proving that p is a prime involves the factorization of 
p-1. If p-1 = 2q, where q is another prime, the size of the problem has only 
been reduced by a factor of 2, so it's interesting to observe Cunningham 
chains of primes with each member one more than twice the previous one. 
D. H. Lehmer found just three such chains of 7 primes with least member 
< 107 : 

1122659,2245319,4490639,8981279, 17962559,35925119,71850239 

2164229,4328459,8656919, 17313839,34627679,69255359, 138510719 

2329469,4658939,9317879, 18635759,37271519,74543039, 149086079 

and two others with least members 10257809 and 10309889. The factoriza
tion of p + 1 can also be used to prove that p is prime. Lehmer found seven 
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chains of length 7 based on P + 1 = 2q. The first three had least members 
16651,67651 and 165901, but the second of these must be discarded, since 
the fifth member is 1082401 = 601 . 1801 (curiously, this is a divisor of 
225 - 1). 

Lalout & Meeus found chains of length 8 of each kind, starting with 
19099919 and 15514861, and these are the smallest of this length. Günter 
Löh has found many new chains: the least of length 9 start with 85864769 
and 857095381; of length 10 with 26089808579 and 205528443121; of length 
11 with 665043081119 and 1389122693971; of length 12 with 554688278429 
and 216857744866621; and achain of length 13 of the second kind starts 
with 758083947856951. A count of all chains ofthe first kind starting below 
1011 and of length 6, 7, 8, 9, 10 gave the respective frequencies 19991, 2359, 
257,21,2. 

Claude Lalout & Jean Meeus, Nearly-doubled primes, J. Recreational Math., 13 
(1980/81) 30-35. 

D. H. Lehmer, Tests for primality by the converse of Fermat's theorem, Bult. 
Amer. Math. Soc., 33(1927) 327-340. 

D. H. Lehmer, On certain chains of primes, Proc. London Math. Soc., 14A (Lit
tlewood 80 volume, 1965) 183-186. 

Günter Löh, Long chains of nearly doubled primes, Math. Comput., 53(1989) 
751-759; MR 90e:ll015. 

AB Gaps between primes. Twin primes. 

There are many problems concerning the gaps between consecutive primes. 
Write dn = Pn+l - Pn so that d1 = 1 and all other dn are even. How large 
and how small can dn be? Rankin has shown that 

d clnnlnlnnlnlnlnlnn 
n> (ln In In n)2 

for infinitely many n and Erdös offers $5,000 for a proof or disproof that 
the constant c can be taken arbitrarily large. Rankin's best value is c = e'Y 

where 'Y is Euler's constant: Maier & Pomerance have improved this by a 
factor k ~ 1.31256, the root of the equation 4/k - e-4/ k = 3, and Pintz 
has made a furt her improvement. 

A very famous conjecture is the Twin Prime Conjecture, that dn = 2 
infinitely often. If n > 6, are there always twin primes between n and 2n? 
Conjecture B of Hardy and Littlewood (cf. Al) is that Pk(n), the number 
of pairs of primes less than n and differing by an even number k, is given 
asymptotically by 
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where the product is taken over all odd prime divisors of k (and so is empty 
and taken to be 1 when k is apower of 2) and c = I1(1-1/(p _1)2) taken 
over all odd primes, so that 2c >:::: 1.32032. If 7r1,2(n) is the number of 
primes p such that p + 2 has at most two prime factors, then Fouvry & 
Grupp have shown that 

2m 
7r1,2(n) 2: 0.71 x (lnn)2 

and 0.71 has been improved to 1.015 by Liu and then to 1.05 by Wu. 
The large twin primes 9 . 2211 ± 1 were discovered by the Lehmers and 

independently by Riesel. Crandall & Penk found twin primes with 64, 136, 
154, 203 and 303 digits, Williams found 156.5202 ± 1, Baillie 297.2546 ± 1, 
Atkin & Rickert 

694503810 . 22304 ± 1 and 1159142985.22304 ± 1 

and in 1989 Brown, Noll, Parady, Smith, Smith & Zarantonello found 

663777.27650 ± 1, 571305.27701 ± 1, 1706595.211235 ± 1. 

On 93:08:16 Harvey Dubner announced a new record with 

24025 .3.54020 ·7· 11 . 13·79·223 ± 1, 

numbers with 4030 decimal digits. 
Richard Brent counted 224376048 primes p less than 1011 for which 

p + 2 is also prime; about 9% more than predicted by Conjecture B. 
Bombieri & Davenport have shown that 

1· . f dn 2 + J3 0 46650 1mm -<--->:::: . 
Inn 8 

(no doubt the real answer is zero; of course the truth of the Twin Prime 
Conjecture would imply this); G.Z. Pilt'yal has improved the constant on 
the right to (2)2 - 1)/4 >:::: 0.45711; Uchiyama to (9 - v'3)/16 >:::: 0.454256; 
Huxley to (4sinO + 30)/(16 sin 0) >:::: 0.44254, where 0 + sinO = 7r/4, and 
later to 0.4394; and Helmut Maier to 0.248. 

Huxley has also shown that 

d < p7/12+< n n , 

Heath-Brown & Iwaniec have improved the exponent to 11/20; Mozzochi 
to 0.548; and Lou & Yao to 6/11. Cramer proved, using the Riemann 
hypothesis, that 

n<x 

Erdos conjectures that the right-hand side should be cx(ln X)2, but thinks 
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that there is no hope of a proof. The Riemann hypothesis implies that 
d < 1/2+< 

n Pn . 
Dorin Andriea eonjeetures that, for all natural n, 

? 

Dan Greeu has verified this for Pn < 106 . In Amer. Math. Monthly, 
83(1976) 61, it is given as a diffieult unsolved problem that 

lim (v'Pn+l - 5n) = 0 
n->oo 

? 

If true, this implies Andriea's eonjeeture for large enough n, which is eom
parable with that of eramer, mentioned in A2, and with the following one 
of Shanks, who has given a heuristie argument whieh supports the eonjee
ture that if p(g) is the first prime that follows a gap of 9 between eonseeutive 
primes, then lnp(g) '" J9. Reeord gaps between eonseeutive primes have 
been observed by Lehmer, Lander & Parkin, Brent, Weintraub, Young & 
Potler and others. Table 2 illustrates Shanks's eonjeeture. 

Table 2. Earliest large gaps between eonseeutive primes. 

9 p(g) (lnp)2 g/(lnp)2 
456 25056082543 573.33 0.7953 
464 42652618807 599.09 0.7745 
468 127976335139 654.09 0.7155 
474 182226896713 672.29 0.7051 
486 241160624629 686.90 0.7075 
490 297501076289 697.95 0.7021 
500 303371455741 698.98 0.7153 
514 304599509051 699.19 0.7351 
516 416608696337 715.85 0.7208 
532 461690510543 721.36 0.7375 
534 614487454057 736.80 0.7247 
540 738832928467 746.84 0.7230 
582 1346294311331 779.99 0.7462 
588 1408695494197 782.53 0.7514 
602 1968188557063 801.35 0.7512 
652 2614941711251 817.52 0.7975 
674 7177162612387 876.27 0.7692 
716 13829048560417 915.53 0.7821 
766 19581334193189 936.70 0.8178 
778 42842283926129 985.24 0.7897 
804 90874329412297 1033.01 0.7783 

The last entry is an unpublished result of Aaron Potler & Jeff Young, 
eommunieated Aug. 1993. 
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Chen Jing-Run showed that, for x large enough, there is always a num
ber with at most two prime factors in the interval [x - XO ,xl for any value 
of Cl: ~ 0.477. Halberstam, Heath-Brown & Richert (see reference at A5) 
showed that in such an interval with Cl: = 0.455 there are at least XO /121 In x 
numbers with at most two prime factors, and Iwaniec & Laborde further 
reduced the exponent to Cl: = 0.45. 

Victor Meally used the phrase prime deserts. He notes that below 
373 the commonest gap is 2; below 467 there are 24 gaps of each of 2, 
4 and 6; below 563 the commonest gap is 6, as it is between 1014 and 
1014 + 108 and probably also from 2 to 1014 . He asks: when does 30 take 
over as the commonest gap? Conway & Odlyzko call da champion for 
x if it occurs most frequently as the difference between consective primes 
:::; x. There may be more than one champion for the same x: C(135) = 4, 
C(100) = {2,4}. They suggest that the only champions are 4 and the 
prime factorials 2, 6, 30, 210, 2310, .... Do champions -+ oo? Does each 
prime p divide all champions for x ~ xo(p)? 
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79T-A132, Notiees Amer. Math. Soe., 26(1979) A-373. 
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Roy. Soe. Sero A, 293(1966)1-18; MR 33 #7314. 
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primes, Math. Comput., 27 (1973) 959--963; MR 48 #8360; (and see Math. 
Comput., 35 (1980) 1435-1436. 
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Math. Comput., 29(1975) 43-56. 

J. H. Cadwell, Large intervals between consecutive primes, Math. Comput., 25 
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22(1979) 253-275; Zbl., 408.10030. 

Chen Jing-Run & Wang Tian-Ze, , Acta Math. Sinica, 32(1989) 712-718; MR 
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Chen Jing-Run & Wang Tian-Ze, On distribution of primes in an arithmetical 
progression, Sei. China Sero A, 33(1990) 397-408; MR 91k:ll078. 
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E. Fouvry & F. Grupp, On the switching principle in sieve theory, J. reine angew. 
Math., 370(1986) 101-126; MR 87j:ll092. 
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Jan Kristian Haugland, Large prime-free intervals by elementary methods, Nor

mat, 39(1991) 76--77. 
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H. Iwaniec & M. Laborde, P2 in short intervals, Ann. Inst. Fourier(Grenoble), 
31(1981) 37-56; MR 83e:10061. 
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Sinica, 34(1991) 832-850; MR 93h:11104. 

Liu Hong-Quan, On the prime twins problem, Sei. China Sero A, 33(1990) 281-
298; MR 9li:11125. 

Lou Shi-Tho & Qi Yao, Upper bounds for primes in intervals (Chinese), Chinese 
Ann. Math. Sero A, 10(1989) 255-262; MR 91d:11112. 

Helmut Maier, Small differences between prime numbers, Michigan Math. J., 
35(1988) 323-344. 

Helmut Maier, Primes in short intervals, Michigan Math. J., 32(1985) 221-225. 
Helmut Maier & Carl Pomerance, Unusually large gaps between consecutive 

primes, Theorie des nombres, (Quebec, PQ, 1987), de Gruyter, 1989, 625-
632; MR 91a:11045: and see Trans. Amer. Math. Soc., 322(1990) 201-237; 
MR 91b:11093. 

C. J. Mozzochi, On the difference between consecutive primes, J. Number Theory 
24 (1986) 181-187. 

Bodo K. Parady, Joel F. Smith & Sergio E. Zarantonello, Largest known twin 
primes, Math. Comput., 55(1990) 381-382; MR 90j:ll013. 
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l1cCJIe,n;oBaHHR rro TeopHH qHCeJI, BbIrr. 4, 113,n;aTeJIbCTBO CapaToBcKoro 
YHHBepcHTeTa 1972, 73-79. 

Daniel Shanks, On maximal gaps between successive primes, Math. Comput., 
18(1964) 646-651; MR 29 #4745. 

S. Uchiyama, On the difference between consecutive prime numbers, Acta Arith., 
27 (1975) 153-157. 

Jie Wu, Sur la suite des nombres premiers jumeaux, Acta Arith., 55(1990) 365-
394; MR 91j:11074. 

JeffYoung & Aaron Potler, First occurrence prime gaps, Math. Comput., 52(1989) 
221-224. 

Alessandro Zaccagnini, A note on large gaps between consecutive primes in arith
metic progressions, J. Number Theory, 42(1992) 100-102. 

A9 Patterns of primes. 

A conjecture more general than Chowla's (see A4) is that there are in
finitely many sets of consecutive primes of any given pattern, provided 
that there are no congruence relations which rule them out. It seems likely, 
for example, that there are infinitely many tripIes of primes 
{6k - 1, 6k + 1, 6k + 5} and {6k + 1, 6k + 5, 6k + 7}. This would be even 
harder to settle than the Twin Prime Conjecture, but its plausibility is of 
interest, since Hensley & Richards have shown that it is incompatible with 
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the well-known conjecture (also due to Hardy & Littlewood) 

1l'(x + y) ::; 1l'(x) + 1l'(y) ??? 

for all integers x, y 2: 2. We've put more queries than usual round this, 
since it is very likely to be false. Indeed, there's some hope of finding values 
of x and y which contradict it. However there's an alternative conjecture, 

1l'(x + y) ::; 1l'(x) + 21l'(y/2) ? 

that the Hensley-Richards method doesn't comment on. 
Montgomery & Vaughan showed that 

1l'(x + y) -1l'(x) ::; 2y/lny 

and Iwaniec observed that for each (), 0< () < 1, there is an T/((}) > () such 
that 

1l'(x + x9 ) -1l'(x) < (2 + f)X9 /(T/(()) lnx) 

for sufficiently large x and he found that T/((}) = ~() - ~ for () > ~, and that 
T/((}) = (1 + (})/2 for () > !. Lou & Yao improve this in part by showing 
that T/((}) = (100() - 45)/11 for 161 < () ::; ~~. 

C. W. Trigg reported that in 1978 M. A. Penk found four primes p, 
p + 2, p + 6 and p + 8 where 

p=802359150003121605557551380867519560344356971. 

H. F. Smith noted that the pattern 11, 13, 17, 19, 23, 29, 31, 37 is 
repeated at least three times, starting with the primes 15760091, 25658841 
and 93625991. In none of these cases is the number corresponding to 41 a 
prime, although n -11, n -13, ... n - 41 are all primes for n = 88830 and 
855750. 

Leech gave as an unsolved problem to find 33 consecutive numbers 
greater than 11 which include 10 primes. In 1961 Herschel Smith found 
20 such sets and also 5 examples of 37 consecutive numbers containing 11 
primes. Smith writes that Selfridge noted some errors in his 1957 paper. 
Sten Säfholm found primes 

{n + 11, ... ,n + 43} for n = 33081664140 

and rediscovered Smith's first three examples, that each of 

{n - 11, ... ,n - 43} is prime for n = 9853497780, 

for n = 21956291910 and for n = 22741837860. Leech wondered why the 
latter sets seem to occur more readily than the former. My guess is that 
this is just a more complicated version of the prime number race (see A4) 
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and that with much more high-powered telescopes we'd see the balance 
being redressed (infinitely often). Dimitrios Betsis & Sten Säfholm have 
found many more patterns, culminating in {n + 11, ... , n + 61} for n = 
21817283854511250 and {n - 11, ... , n - 61} for n = 79287805466244270. 

Erdös asks, for each k, what is the smallest 1 for which Pk, Pk+I, ... , 

Pk+l-l is the only set of 1 consecutive primes with this pattern. E.g., the 
pattern 3, 5, 7 cannot occur again. The pattern 5, 7, 11, 13, 17 repeats at 
101, 103, 107, 109, 113 and no doubt occurs infinitely often, but consid
erations mod 5 show that the pattern 5, 7, 11, 13, 17, 19 does not occur 
again. (Pk, l) = (2,2), (3,3), (5,6), .... 

Antal Balog, The prime k-tuplets conjecture on the average, Analytic Number 
Theory (Allerton Park, !L, 1989), 47-75, Progr. Math., 85, Birkhäuser, 
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Math., 81(1992) 19-32. 
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Louis, 1972) 24 123-127. 

H. Iwaniec, On the Brun-Titchmarsh theorem, J. Math. Soc. Japan, 34(1982) 
95-123; MR 83a:10082. 

John Leeeh, Groups ofprimes having maximum density, Math. Tables Aids Com
put., 12(1958) 144-145; MR 20 #5163. 

H. L. Montgomery & R. C. Vaughan, The large sieve, Mathematika, 20(1973) 
119-134; MR 51 #10260. 

Ian Richards, On the incompatibility of two conjectures concerning primes; a 
discussion of the use of computers in attacking a theoretical problem, Bull. 
Amer. Math. Soc., 80(1974) 419-438. 

Herschel F. Smith, On a generalization of the prime pair problem, Math. Tables 
Aids Comput., 11(1957) 249-254; MR 20 #833. 

Charles W. Trigg, A large prime quadruplet, J. Recreational Math., 14 
(1981/82) 167. 

Sheng-Gang Xie, The prime 4-tuplet problem (Chinese. English summary), 
Sichuan Daxue Xuebao, 26(1989) 168-171; MR 9lf:11066. 

AIO Gilbreath's conjecture. 

Define d~ by d~ = dn and d~+1 = Id~+1 - d~l, that is, the successive 
absolute differences of the sequence of primes (Figure 2). N. L. Gilbreath 
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conjectured (and Hugh Williams notes that Proth long before claimed to 
have proved) that d~ = 1 for all k. This was verified for k < 63419 by 
Killgrove & Ralston. Odlyzko has checked it for primes up to 11"(1013) ~ 
3 . 1011 ; he only needed to examine the first 635 differences. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 
12242424626424662642646 
1022222244222204422422 
120000020200024020220 
12000022220022422202 
1200020002020220022 
120022002222202020 
12020202000022222 

1 2 2 2 2 2 2 2 000 200 0 0 
1 0 0 0 0 0 0 200 2 2 0 0 0 

Figure 2. Successive Absolute Differences of the Sequence of Primes. 

Hallard Croft and others have suggested that it has not hing to do with 
primes as such, but will be true for any sequence consisting of 2 and odd 
numbers, which doesn't increase too fast, or have too large gaps. Odlyzko 
discusses this. 

R. B. Killgrove & K. E. Ralston, On a conjecture concerning the primes, Math. 
Tables Aids Comput., 13(1959) 121-122; MR 21 #4943. 

Andrew M. Odlyzko, Iterated absolute values of differences of consecutive primes, 
Math. Comput., 61(1993) 373-380; MR 93k:1l1l9. 

F. Proth, Sur la serie des nombres premiers, Nouv. Corresp. Math., 4(1878) 236-
240. 

All Increasing and decreasing gaps. 

Since the proportion of primes gradually decreases, albeit somewhat errat
ically, dm < dm +1 infinitely often, and Erdös & 'furan have shown that the 
same is true for dn > dn+1 . They have also shown that the values of n for 
which dn > dn+1 have positive lower density, but it is not known if there 
are infinitely many decreasing or increasing sets of three consecutive values 
of dn . If there were not, then there is an no so that for every i and n > no 
we have dn+2i > dn+2i+1 and dn+2i+1 < dn+2i+2. Erdös offers $100.00 for 
a proof that such an no does not exist. He and 'furan could not even prove 
that for k > ko, (-1t(dk+r+1 - dk+r) can't always have the same sign. 

P. Erdös, On the difference of consecutive primes, Bull. Amer. Math. Soc., 54(1948) 
885-889; MR 10, 235. 

P. Erdös & P. Turan, On some new questions on the distribution of prime num
bers, Bull. Amer. Math. Soc., 54(1948) 371-378; MR 9,498. 
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A12 Pseudoprimes. Euler pseudoprimes. Strong 
pseudoprimes. 

Pomerance, Selfridge & Wagstaff call an odd composite n for which 
an- 1 == 1 mod n a pseudoprime to base a (psp(a)). This usage is 
introduced to avoid the clumsy "composite pseudoprime" which appears 
throughout the literature. Odd composite n which are psp( a) for ev
ery a prime to n are Carmichael numbers (see A13). An odd com
posite n is an Euler pseudoprime to base a (epsp( a)) if a 1.. n and 
a(n-l)/2 == (~) mod n, where (~) is the Jacobi symbol (see F5). Finally, 
an odd composite n with n - 1 = d· 28 , d odd, is a strong pseuodoprime 
to base a (spsp(a)) if ad == 1 mod n (otherwise ad .2r == -1 mod n for some 
r, 0 ::; r < s). These definitions are illustrated by a Venn diagram (Figure 
3) which displays the smallest member of each set. 

psp(2) 

Carmichael numbers 

epsp(2) 

spsp(2) 

2047 15841 

1905 561 
2821 

341 

Figure 3. Relationships of Sets of psps with Least Element in Each Set. 

The following values of P2(X), E2(X), S2(X) and C(x) - the numbers of 
psp(2), epsp(2), spsp(2) and Carmichael numbers less than x, respectively 
- were given by Pomerance, Selfridge & Wagstaff: 

X 103 104 105 106 107 108 109 1010 2.5.1010 

P2(X) 3 22 78 245 750 2057 5597 14884 21853 
E2(X) 1 12 36 114 375 1071 2939 7706 11347 
S2(X) 0 5 16 46 162 488 1282 3291 4842 
C(x) 1 7 16 43 105 255 646 1547 2163 

Lehmer and Erdös showed that, for sufficiently large x, 

c1lnx < P2(X) < xexp{ -c2(lnxlnlnx)1/2} 
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and Pomerance improved these bounds to 

exp{(lnx)5/14} < P2(X) < xexp{(-lnxlnlnlnx)/2Inlnx} 

and has a heuristic argument that the true estimate is the upper bound 
with the 2 omitted. The exponent 5/14 has been improved to 85/207 by 
Pomerance, using a result of Friedlander. 

There are also examples of even numbers such that 2n == 2 mod n. 
Lehmer found 161038 = 2·73· 1103 and Beeger showed that there are 
infinitely many. If Fn is the Fermat number 22n + 1, Cipolla showed that 
Fn1 Fn2 ••• Fnk is psp(2) if k > 1 and nl < n2 < ... < nk < 2n1 • 

If p~a) is the n-th psp(a) , Szymiczek has shown that L: 1/ p~2) is conver
gent, while Ml}kowski has shown that L: 1/ In p~a) is divergent. Rotkiewicz 
has a booklet on pseudoprimes which contains 58 problems and 20 conjec
tures. 

For example, Problem #22 asks if there is a pseudoprime of form 2N - 2. 
Wayne McDaniel answers this affirmatively with N = 465794. Rotkiewicz 
has shown that the congruence 2n - 2 == 1 mod n has infinitely many com
posite solutions n. Shen Mok-Kong found five such less than a million, 
each of which ended in 7. McDaniel and Zhang Ming-Zhi have given the 
examples 73 . 48544121 and 524287 . 13264529 which each show that 3 is 
also a possible final digit. 

Selfridge, Wagstaff & Pomerance offer $500.00 + $100.00 + $20.00 for a 
composite n == 3 or 7 modl0 which divides both 2n - 2 and the Fibonacci 
number U n+l (see A3) or $20.00 + $100.00 + $500.00 for a proof that there 
is no such n. 

Shen Mok-Kong has shown that there are infinitely many k such that 
2n - k == 1 mod n has infinitely many composite solutions n, and Kiss & 
Phong have shown that this is so for all k ~ 2 and for all a ~ 2 in place 
of 2. 
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N. G. W. H. Beeger, On even numbers m dividing 2m - 2, Amer. Math. Monthly, 
58(1951) 553-555; MR 13, 320. 
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pseudoprimes, Math. Comput., 51(1988) 259-279; MR 8ge:l1011. 
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Kim Su-Hee & Carl Pomerance, The probability that a random probable prime 
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D. H. Lehmer, On the converse of Fermat's theorem, Amer. Math. Monthly, 
43(1936) 347-354; II 56(1949) 300-309; MR 10, 681. 

Andrzej Ml}kowski, On a problem of Rotkiewicz on pseudoprime numbers, Elem. 
Math., 29(1974) 13. 
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A13 Carmichael numbers. 

The Carmichael numbers (psp( a) for all a prime to n, n composite) must be 
the product of at least three odd prime factors. As long aga as 1899 KorseIt 
had given a necessary and sufficient condition for n to be a Carmichael 
number; namely that n be squarefree and such that (p - 1) I (n - 1) for each 
p that divides n. The smallest example is 561 = 3· 11 . 17. More generally, 
if p = 6k + 1, q = 12k + 1 and r = 18k + 1 are each prime, then pqr is a 
Carmichael number. It seems certain that there are infinitely many such 
tripIes of primes, but beyond our means to prove it. Alford, Granville & 
Pomerance have shown (by a different method!) that there are infinitely 
many Carmichael numbers, in fact, for sufficiently large x, more than xß 

of them less than x, where 

ß = 152 (1 - 2~) > 0.290306 > ~ 
Erdos had conjectured that (ln C (x) ) j In x tends to 1 as x tends to infinity 
and he improved a result of Knödel to show that 

C(x) < xexp{-clnxlnlnlnxjlnlnx}. 

Then Pomerance, Selfridge & Wagstaff (see A12) proved this with c = 1-€ 
and give a heuristic argument supporting the conjecture that the reverse 
inequality holds with c = 2 + €. 

They found 2163 Carmichael numbers < 25· 109 and Jaeschke finds 
6075 more between that bound and 1012 ; seven of these have eight prime 
factors. Richard Pinch has counted 

8241 19279 44706 105212 246683 such numbers 
< 1012 1013 1014 1015 1016 
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A fair-sized specimen is 

2013745337604001 = 17·37·41·131·251·571 ·4159. 

J. R. Hill found the large Carmichael number pqr where p = 5.1019 + 371, 
q = 2p - 1 and r = 1 + (p - l)(q + 2)/433. Wagstaff produced a 321-
digit example, and Woods & Huenemann one of 432 digits. Dubner has 
continued to beat this and his own records, a 3710-digit specimen being 
N = PQR where P = 6M +1, Q = 12M +1 and R = 1+(PQ-1)/X are 
primes given by M = (TC - l)A /4, T the product of the odd primes up 
to 47, C = 141847, A = 41 and X = 123165. But Günter Löh & Wolfgang 
Niebuhr have developed new algorithms which completely eclipse these by 
producing a Carmichael number with no fewer than 1101518 prime facors, 
a number of 16142049 decimal digits! 

Alford, Granville & Pomerance proved that there are infinitely many 
Carmichael numbers n with the stronger requirement that pln implies 
(p2 _ l)l(n - 1), but didn't know of any examples. Sid Graham found 
18 such numbers, the smallest being 
5893983289990395334700037072001 = 29·31·37·43·53·67·79·89·97·151·181·191·419·881·883 

Richard Pinch had already found the smallest of all: 

443372888629441 = 17 . 31 . 41 . 43 . 89 . 97 . 167 . 331 

Graham found 17 other numbers that satisfy the slightly weaker condition 
p221 I(n - 1). 
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A14 "Good" primes and the prime number 
graph. 

Erdös and Straus called the prime Pn good if p;, > Pn-lPn+l for all i, 
1 :::; i :::; n - 1; for example, 5, 11, 17 and 29. Pomerance used the 
"prime number graph" (see A5) to show that there are infinitely many 
good primes. He asks the following questions. Is it true that the set of 
n for which Pn is good has density O? Are there infinitely manY n with 
PnPn+1 > Pn-iPn+1+i for all i, 1 :::; i :::; n - 1? Are there infinitely many 
n with Pn + Pn+1 > Pn-i + Pn+1+i for all i, 1 :::; i :::; n - 1? Does the 
set of n for which 2pn < Pn-i + Pn+i for all i, 1 :::; i :::; n - 1 have den
sity O? (Pomerance proved that there were infinitely many such n.) Is 
limsup{minO<i<n(Pn-i + Pn+i) - 2pn} = oo? 
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Al5 Congruent products of consecutive numbers. 

Erdös, in a letter dated 79-10-31, observes that 3·4 == 5·6·7 == 1 mod 11 
and asks for the least prime p such that there are integers a, k1, k2 , k3 and 

k 1 k 2 ka 

II (a + i) == II (a + k1 + i) == II (a + k1 + k2 + i) == 1 mod p. 
i=l i=l i=l 

He suggests that such primes p exist for any number of such congruent 
products. 

Ml}kowski sends examples corresponding to rows n = 5 and 6 in the 
table below [compare Fll] and says that tables of indices can be used to 
find others. W. Narkiewicz also sends these examples, together with those 
in rows n = 7, 8 and 9 below. Landon NoH & Chuck Simmons generalize 
the problem slightly by asking for solutions of 

and they give the least prime p for which there is a solution with n terms. 

n p ql q2 q3 q4 q5 q6 q7 qs qg q10 ql1 
1 2 0 
2 2 0 1 
3 5 0 1 3 
4 17 0 1 5 11 
5 17 0 1 5 11 15 
6 23 0 1 4 8 11 21 
7 71 8 10 20 52 62 64 71 
8 599 29 51 123 184 251 290 501 540 
9 599 29 51 123 184 251 290 501 540 556 
10 3011 0 1 611 723 749 805 2205 2261 2287 2399 
11 3011 0 1 611 723 749 805 2205 2261 2287 2399 3009 

Andrzej M~owski, On a number-theoretic problem of Erdös, Elem. Math., 38 
(1983) 101-102. 

Al6 Gaussian primes. Eisenstein-Jacobi primes. 

Prime numbers can be defined in fields other than the rational field. In the 
complex number field they are caHed Gaussian primes. Many problems 
on ordinary primes can be reformulated for Gaussian primes. 

Gaussian integers a+bi, where a, bare integers and i 2 = -1, behave 
like ordinary integers in the sense that there is unique factorization 
(apart from order, units (±1, ±i) and associatesj the associates of 7, for 
example, are 7, -7, 7i and -7i). Primes of shape 4k - 1 (3,7, 11, 19,23, 
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... ) are still primes in the ring of Gaussian integers, but the other ordinary 
primes can be factored into Gaussian primes: 

2 = (1 + i)(l - i), 5 = (2 + i)(2 - i) = -(2i - 1)(21 + 1), etc. 

13 = (2+3i)(2-3i), 17 = (4+i)(4-i), 29 = (5+2i)(5-2i), .... 

The Gaussian primes ±1 ± i, ±1 ± 2i, ±2 ± i, ±3, ±3i, ±2 ± 3i, ±3 ± 2i, 
±4 ± i, ±1 ± 4i, ±5 ± 2i, ±2 ± 5i, ... make a pleasing pattern (Figure 4) 
when drawn on an Argand diagram, which has been used for tiling floors 
and weaving tablecloths. 

Motzkin and Gordon asked if one can "walk" from the origin to infinity 
using the Gaussian primes as "stepping stones" and taking steps of bounded 
length. Presumably not. Jordan & Rabung have shown that steps of length 
at least 4 are necessary. 

• •• 

•• • •• 
Figure 4. The Gaussian Primes with Norm Less Than 1000. 
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The Eisenstein-Jacobi integers a + bw, where a, bare integers and 
w is a complex cube root of unity, w2 + w + 1 = 0, also enjoy unique 
factorization. The primes again form a pattern (Figure 5), this time with 
hexagonal symmetry, because there are six units, ±1, ±w, ±w2 . The prime 
2 and those of shape 6k - 1 (5, 11, 17, 23, 29, 41, ... , ) are still Eisenstein
Jacobi primes, but 3 and those of shape 6k + 1 can be factored: 

3=(1-w)(1-w2 ), 7 = (2 -w)(2 _w2 ), 13 = (3 - w)(3 - w2 ), 

19 = (3-2w)(3-2w2 ), 31 = (5-w)(5-w 2 ), 37 = (4-3w)(4-3w2 ), .•.• 

John Leech asks for long arithmetic progressions of Gaussian primes 
and also of Eisenstein-Jacobi primes. He finds nine in Figure 4 and twelve 
in Figure 5. He later found the arithmetic progression 

-8 - 13i, -3 - 8i, 2 - 3i, 7 + 2i, ... , 37 + 32i 

of ten Gaussian primes, the last three of which are outside Figure 4 . 

. .... , .. ,... . " .. .. . ..... ., ,.. . ... , .. , " ....... . 
, ,..~,., , .. , .... ,,. iJ " 

, .... ,. ,····· .. 'a. • •• ', 
• ~. a . ....... ",. •• 

I, .. )"C. .) •• ( .. " .. ,J;" .... : ··."C :·r··"<' .. ". " I .... ,"" '.' .. "1." .. I,· .. • ,)"'. "I .,' .. ..... ...., ,eli" !. ,.,. ...... .. _ ... " .... ..... .. a.· __ •. 
..... " .......... :ö. C ......... , ... . . ,. ,., ....... ,.. , .... ,. .. .,. . 

• !. ,. I"'!. "",' '." "W ~ .,. .. !. ... "., ....... l-. ...." ... 
V"~ ..... ~ ... , ... ~~. ~"" ... ." ' .. ,' :, .. :) ··,e .. ..: i,"" ... , •• ,.. " ·C·' .,. C .. • " .. _.'" ••• .,. a" I .,." ~ .. .. .......... , 

~ I! .', ( ,'::i,· ) ,,'- !\ ? ...... , " ,. , ... • •• ,. • C·· • • • .), : ,<. • 
Figure 5. The Eisenstein-Jacobi Primes. 
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J. H. Jordan & J. R. Rabung, A conjecture of Paul Erdös concerning Gaussian 
primes, Math. Comput., 24(1970) 221-223. 

Al7 Formulas for primes. 

Perhaps the philosopher's stone of number theory is a formula for Pn, or 
for 1l"(x), or for a necessary and sufficient condition for primality. Wilson's 
theorem seems to be unique (is Vantieghem's result, that P > 2 is prime 
if and only if rr~:i(2d - 1) == P mod 2P - 1 equivalent to it?); but even 
that is useless for computation. C. P. Willans and C. P. Wormell used it 
to give formulas which use only elementary functions, but which are too 
clumsy to print here. The Mann-Shanks algorithm is another curiosity, 
of even less practical value. Matiyasevich and other logicians have used 
Wilson's theorem and their solution of Hilbert's tenth problem to produce 
polynomials the positive part of whose range is exactly the set of primes. 

Three theorems of Boris Stechkin may be worth recording. They are 
based on the function 

(1) n - 1 is prime just if S(n) = d(n), the number of divisors of n, 
(2) n ± 1 are twin primes just if S(n) + S(n + 1) = 2d(n). 
(3) P < q odd primes implies S(q)-S(q-l)+S(q-2)- ... -S(p+l) = O. 

The numerous papers on this topic vary widely in their sophistication 
and in their aim. It seems desirable to distinguish between 

1. A formula for 1l"(x) as a function of x. 

2. A formula for Pn as a function of n. 

3. A necessary and sufficient condition for n to be prime. 

4. A function that is prime for each member of its domain. 

5. A function (the positive part of) whose range consists only of primes, 
or consists of all of the primes. 

6. A function whose range contains a high density of primes. 

7. A formula for the largest prime divisor of n. 

8. A formula for the prime factors of n. 

9. A formula for the smallest prime greater than n. 

10. A formula for Pn+1 in terms of PI, P2, ... , Pn. 

11. An algorithm for generating the primes. And so on .... 
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Examples of each can be found in the references. We have already 
mentioned (in Al) Euler's famous formula n2 + n + 41. In some sense this 
is best possible, but quadratic expressions with positive discriminant can 
yield even longer sequences of prime values (though some of them may be 
negative). Gilbert Fung gives 47n2 - 1701n + 10181, 0 ::; n ::; 42, Ll = 
979373 and Russell Ruby 36n2 - 810n + 2753, 0 ::; n ::; 44, Ll = 22327213. 

The first 1000 values of Euler's formula include 581 primes. Edgar 
Karst beats this with 598 values of 2n2 - 199 and in a 91-01-01 letter, 
Stephen Williams announces 602 prime values of 2n2 -1000n - 2609. The 
corresponding numbers among the first 10000 values are 4148, 4373 and 
4151. However, what is significant is not the actual density over the first 
so many values, which clearly has to tend to zero in all cases, but the 
asymptotic density, which, if we believe Hardy & Littlewood (see Al), 
is always cvn/ In n, and the best that can be done is to make the value 
of c as large as possible. Shanks has calculated c = 3.3197732 for Euler's 
formula and c = 3.6319998 for a polynomial x2 +x+27941 found by Beeger. 
Fung & Williams (see reference at Al and the references they give) have 
achieved c = 5.0870883 with the formula x 2 + x + 132874279528931. If Ll 
is the discriminant of the quadratic, then the Legendre symbol (see F5) 

( %) takes the value 1 for very few of the small primes, p. 

Sierpinski observes that it follows from Fermat 's theorem that if n is 
prime, then n divides 

1n- 1 + 2n - 1 + ... + (n - l)n-l + 1. 

Is the converse true? Giuga so conjectured and verified it for n ::; 101000 and 
Bedocchi verified it to n ::; 101700 . Giuga observed that a counterexample 
would be a Carmichael number (AI2, AI3), that pln would imply that 
(p - l)l(n - 1) and that 

1 1 
2:p-~ 
pln 

must be an integer, so that n contains at least eight distinct prime factors. 
An equivalent conjecture is that 

nBn - 1 == -1 mod n 

where the Bernoulli numbers Bk are the coefficients in the expansion of 
x/(eX - 1) = Lk~O Bkxk /k! (compare D2). 
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AIS The Erdös-Selfridge classification of primes. 

Erdös & Selfridge dassify the primes as follows: p is in dass 1 if the only 
prime divisors of p + 1 are 2 or 3; and p is in dass r if every prime factor of 
p + 1 is in some dass:::; r - 1, with equality for at least one prime factor. 
For example: 

dass 1: 2 3 5 7 11 1723 31 47 53 71 107 127 191 431 647863971 ... 
dass 2: 13 19 29 41 43 59 61 67 79 83 89 97 101 109 131 137 139 149 167 179 197 

199 211 223 229 239 241 251 263 269 271 281 283 293 307 317 319 359 367 373 
377 383 419 439 449 461 467 499 503 509 557 563 577 587 593 599 619 641 643 
659 709 719 743 751 761 769809827839881 919 929 953 967979991 1019 ... 

dass 3: 37103113151 157163173181 193227233257277311 331 337347353 
379 389 397 401 409 421 457 463 467 487 491 521 523 541 547 571 601 607 613 
631 653 683 701 727 733 773 787 811 821 829 853 857 859 877 883 911 937 947 
983 997 1009 1013 1021 ... 

dass 4: 73 313 443 617 661 673 677 691 739 757 823 887 907 941 977 ... 
dass 5: 1321 1381 ... 

It's easy to prove that the number of primes in dass r, not exceeding 
n, is o(nf) for every f > 0 and all r. Prove that there are infinitely many 

primes in each dass. If pir ) denotes the least prime in dass r, so that 

pil ) = 2, pi2) = 13, pi3) = 37, pi4) = 73 and pi5) = 1021, then Erdös 

thought that (pir))l/r -+ 00, while Selfridge thought it quite likely to be 
bounded. 
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A similar classification arises if p + 1 is replaced by p - 1: 

dass 1: 2 3 5 7 13 17 19 37 73 97 109 163 193 433 487 577 769 1153 ... 
dass 2: 11 29 31 41 43 53 61 71 79 101 103 113 127 131 137 149 151 157 181 191 

197 211 223 229 239 241 251 257 271 281 293 307 313 337 379 389 401 409 421 
43944344945949152154' 547571 593 601 613631641647653673677701 
751 757 761 773 811 877 88;, 911 919 937 953 971 1009 1021 ... 

dass 3: 23 59 67 83 89 107 173 199 227 233 263 311 317 331 349 353 367 373 383 
397 419 431 463 479 503 509 523 563 569 587 607 617 619 661 683 727 733 739 
743787809821 823853 859 881 887 907 929 947 977 983 991 1031 1033 ... 

dass 4: 47 139 167 179 269 277 347 461 467499599643691 709 797 827 829 839 
857 863 967 997 1013 1019 .. . 

dass 5: 283 359 557 659 941 .. . 
dass 6: 719 1319 ... 
dass 7: 1439 ... 

for which similar answers are to be expected. Are corresponding classes 
equally dense? There is a connexion with Cunningham chains (A7). 

P. Erdös, Problems in number theory and combinatorics, Congr. Numer. XVIII, 
Proc. 6th Conf. Numer. Math., Manitoba, 1976, 35-58 (esp. p. 53); MR 
80e:10005. 

A19 Values of n making n - 2k prime. Odd 
numbers not of the form ±pa ± 2b. 

Erdös conjectures that 4, 7, 15, 21, 45, 75 and 105 are the only values of 
n for which n - 2k is prime for all k such that 2 :::; 2k < n. Mientka & 
Weitzenkamp have verified this for n < 244 and Uchiyama & Yorinaga have 
extended this to 277 . Vaughan has proved that there are not too many such 
numbers, less than xexp{ -(lnx)C} of them less than x, but he was unable 
to show that there were less than x 1- e . 

Erdös also conjectures that for infinitely many n, all the integers n - 2k , 

1 :::; 2k < n are squarefree (see also F13). 
Ifwe denote by A(x) the number of n :::; x for which all n-2k are prime, 

2 :::; 2k < n, then Hooley showed that the extended Riemann hypothesis 
implies that A(x) = O(XC ) with an explicit c < 1, and Narkiewicz improved 
this to c < ~. 

Cohen & Selfridge ask for the least positive odd number not of the form 
±pa ± 2b, where p is prime, a ~ 0, b ~ 1 and any choice of signs may be 
made. They observe that the number is greater than 218 , but at most 

61206699060672 7677809211 56017566254819576161-
631922981734368549334512406741 7420946855 8999326569. 

Crocker proved that there are infinitely many odd integers not of the 
form 2k + 2l + p, where p is prime. Erdös suggests that there may be cx 
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of them less than x, but can > XE be proved? Can we show that covering 
congruences (F13) do not help here? I.e., does p+2u +2v (or p+2u +2v +2W ) 

meet every arithmetic progression? More generally, Erdös asks if, for each 
r, there are infinitely many odd integers not the sum of a prime and r or 
fewer powers of 2. Is their density positive? Do they contain an infinite 
arithmetic progression? In the opposite direction, Gallagher has proved 
that for every € > 0 there is a sufficiently large r so that the lower density 
of sums of primes with r powers of 2 is greater than 1 - €. 

Erdös also asks if there is an odd integer not of the form 2k + s where 
s is squarefree. 

Let f (n) be the number of representations of nasa sum 2k + p, and let 
{ai} be the sequence of values of n for which f(n) > O. Does the density 
of {ai} exist? Erdös showed that f(n) > cln In n infinitely often, but could 
not decide if f(n) = o(lnn). He conjectures that limsup(ai+l - ai) = 00. 

This would follow if there are covering systems with arbitrarily large least 
moduli. 

Carl Pomerance notes that for n = 210, n - p is prime for all p, n/2 < 
p < n, and asked if there is any other such n. With help from Deshouillers, 
Granville & Narkiewicz he later answered this negatively. 
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B. Divisibility 

We will denote by den) the number of positive divisors of n, by a(n) the 
sum of those divisors, and by ak(n) the sum of their kth powers, so that 
ao(n) = den) and aI(n) = a(n). We use sen) for the sum of the aliquot 
parts of n, i.e., the positive divisors of nother than n itself, so that 
sen) = a(n) - n. The number of distinct prime factors of n will be denoted 
by wen) and the total number, counting repetitions, by O(n). 

Iteration of various arithmetic functions will be denoted, for example, 
by sk(n), which is defined by sO(n) = n and sk+1(n) = s(sk(n)) for k 2:: o. 

We use the notation dln to mean that d divides n, and e f n to mean 
that e does not divide n. The notation pklln is used to imply that pkln but 
pHI f n. By [m, n] we will mean the consecutive integers m, m + 1, ... ,n. 

BI Perfect numbers. 

Aperfeet number is one with sen) = n. Euclid knew that 2P- I(2P - 1) 
was perfeet if 2P - 1 is prime. For example, 6, 28, 496, ... ; see the list 
of Mersenne primes in A3. Euler showed that these were the only even 
perfect numbers. 

The existence or otherwise of odd perfeet numbers is one of the more 
notorious unsolved problems of number theory. The lower bound for an 
odd perfeet number has now been pushed to 10300 by Brent, Cohen & te 
Riele. Brandstein has shown that the largest prime factor is > 500000 and 
Hagis that the second largest is > 1000. Cohen has shown that it contains 
a component (prime power divisor) > 1020, and Sayers that there are at 
least 29 prime factors (not necessarily distinct). 

Pomerance has shown that an odd perfect number with at most k dis
tinct factors is less than 

(4k )(4k)2 
k 2 

but Heath-Brown has much improved this by showing that if n is an odd 
number with a(n) = an, then n < (4d)4 k , where d is the denominator of a 
and k is the number of distinct prime factors of n. In particular, if n is an 
odd perfeet number with k distinct prime factors, then n < 44k . 

44 
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John Leech asks for examples of spoof odd perfeet numbers, like Des-
cartes's 

which is perfeet if you pretend that 22021 is prime. 
For many earlier references, see the first edition of this book. 

Michael S. Brandstein, New lower bound for a factor of an odd perfect number, 
#82T-10-240, Abstracts Amer. Math. Soc., 3(1982) 257. 

Richard P. Brent & Graeme L. Cohen, A new lower bound for odd perfect num
bers, Math. Comput., 53(1989) 431-437. 

R. P. Brent, G. L. Cohen & H. J. J. te Riele, Improved techniques for lower 
bounds for odd perfect numbers, Math. Comput., 57(1991) 857-868; MR 
92c:ll004. 

Graeme L. Cohen, On the largest component of an odd perfect number, J. Aus
tral. Math. Soc. Sero A, 42(1987) 280-286. 

P. Hagis, Sketch of a proof that an odd perfect number relatively prime to 3 has 
at least eleven prime factors, Math. Comput., 40(1983) 399-404. 

P. Hagis, On the second largest prime divisor of an odd perfect number, Lecture 
Notes in Math., 899, Springer-Verlag, New York, 1971, pp. 254-263. 

D. R. Heath-Brown, Odd perfect numbers, (submitted). 
Masao Kishore, Odd perfect numbers not divisible by 3 are divisible by at least 

ten distinct primes, Math. Comput., 31(1977) 274-279; MR 55 #2727. 
Masao Kishore, Odd perfeet numbers not divisible by 3. 11, Math. Comput., 

40(1983) 405-411. 
M. D. Sayers, An improved lower bound for the total number of prime factors of 

an odd perfect number, M.App.Sc. Thesis, NSW Inst. Tech., 1986. 

B2 Almost perfeet, quasi-perfeet, pseudoperfeet, 
harmonie, weird, multiperfeet and 
hyperperfeet numbers. 

Perhaps because they were frustrated by their failure to disprove the exis
tence of odd perfeet numbers, numerous authors have defined a number of 
closely related concepts and produced a raft of problems, many of which 
seem no more tractable than the original. 

For a perfect number, a(n) = 2n. If a(n) < 2n, n is called deficient. A 
problem in Abacus was to prove that every number n > 3 is the sum of two 
deficient numbers, or to find a number that was not. If a(n) > 2n, then n 
is called abundant. If a(n) = 2n - 1, n has been called almost perfeet. 
Powers of 2 are almost perfectj it is not known if any other numbers are. 
If a(n) = 2n+ 1, n has been called quasi-perfect. Quasi-perfect numbers 
must be odd squares, but no one knows if there are any. Masao Kishore 
shows that n > 1030 and that w(n) ~ 6. Hagis & Cohen have improved 
these results to n > 1035 and w(n) ~ 7. Cattaneo originally claimed to 
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have proved that 3 f n, but Sierpinski and others have observed that his 
proof is fallacious. Kravitz, in a letter, makes a more general conjecture, 
that there are no numbers whose abundanee, 0"( n) - 2n, is an odd square. 
In this connexion Graeme Cohen writes that it is interesting that 

and that if O"(n) = 2n+k2 with n 1- k, then w(n) 2: 4 and n > 1020. He has 
also shown that if k < 1010 then w(n) 2: 6, and that if k < 44366047 then 
n is primitive abundant (see below). Later, relaxing the condition n 1- k, 
he finds the solution 

n = 2 . 32 . 2388972, k = 32 . 23 . 1999 

and five solutions n = 22 • 72 . p2, with 

p = 53 277 541 153941 358276277 
k = 7· 29 5· 7· 23 5· 7 . 43 5· 7 . 103 . 113 5· 7 . 227 . 229 . 521 

He verifies that the first of these last five is the smallest integer with odd 
square abundance. Sidney Kravitz has since sent two more solutions, 

n = 23 . 32 .16572, k = 3·11 ·359, 

n=24 .312 .79922201791288932, k=44498798693247589. 

In the latter, 31 divides k. Erdös asks for a characterization of the large 
numbers for whieh 100(n) - 2nl < C for some constant C. For example, 
n = 2m : for other infinite families, see Ml}kowski's two papers. 

Wall, Crews & Johnson showed that the density of abundant numbers 
lies between 0.2441 and 0.2909. In an 83-08-17 letter Wall claimed to have 
narrowed these bounds to 0.24750 and 0.24893. Erdös asks if the density 
is irrational. 

Sierpinski called a number pseudoperfeet if it was the sum of some 
of its divisors; e.g., 20 = 1 + 4 + 5 + 10. Erdös has shown that their 
density exists and says that presumably there are integers n whieh are not 
pseudoperfect, but for whieh n = ab with a abundant and b having many 
prime factors: can b in fact have many factors < a? 

For n 2:: 3 Abbott lets l = l(n) be the least integer for which there are 
n integers 1 :::; al < a2 < ... < an = l such that ails = I: ai for each i (so 
that s is pseudoperfect). He can show that l(n) > nCllnlnn for some Cl > 0 
and all n 2:: 3 and tha t l ( n) < n C2 In In n for some C2 > 0 and infini tely many 
n. 

Call a number primitive abundant if it is abundant, but all its proper 
divisors are deficient, and primitive pseudoperfeet if it is pseudoper
feet, but none of its proper divisors are. If the harmonie mean of all the 
divisors of n is an integer, Pomeranee called n a harmonie number. 
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A. & E. Zachariou call these "Ore numbers" and they eall primitive pseu
doperfect numbers "irreducible semiperfeet". They note that every multi
ple of a pseudoperfeet number is pseudoperfect and that the pseudoperfect 
numbers and the harmonie numbers both include the perfect numbers as 
a proper subset. The last result is due to Ore. All numbers 2m p with 
m :2: 1 and p a prime between 2m and 2m +! are primitive pseudoperfect, 
but there are sueh numbers not of this form, e.g., 770. There are infinite
ly many primitive pseudoperfeet numbers that are not harmonie numbers. 
The smallest odd primitive pseudoperfect number is 945. Erdös can show 
that the number of odd primitive pseudoperfect numbers is infinite. 

Garcia extended the list of harmonie numbers to include all 45 whieh 
are < 107 , and he found more than 200 larger ones. The least one, apart 
from 1 and the perfect numbers, is 140. Are any of them squares, apart 
from I? Are there infinitely many of them? If so, find upper and lower 
bounds on the number of them that are< x. Kanold has shown that their 
density is zero, and Pomeranee that a harmonie number of the form paqb 
(p and q primes) is an even perfeet number. If n = paqbrc is harmonie, is 
it even? 

Whieh values does the harmonie mean take? Presumably not 4, 12, 16, 
18, 20, 22, ... ; does it take the value 23? Ore's own conjecture, that every 
harmonie number is even, implies that there are no odd perfeet numbers! 

Bateman, Erdös, Pomerance & Straus show that the set of n for whieh 
a(n)jd(n) is an integer has density 1, that the set for whieh a(n)jd(n)2 is 
an integer has density ~, and that the number of rationals r :::; x of the 
form a(n)jd(n) is o(x). They ask for an asymptotie formula for 

where the sum is taken over those n :::; x for which d( n) does not divide a( n). 
They also note that the integers n for whieh d(n) divides s(n) = a(n) - n, 
have zero density, beeause for almost all n, d(n) and a(n) are divisible by 
a high power of 2, while n is divisible only by a low power of 2. 

Benkoski has called a number weird if it is abundant but not pseudoper
feet. For example, 70 is not the sum of any subset of 

1 + 2 + 5 + 7 + 10 + 14 + 35 = 74 

There are 24 primitive weird numbers less than a million: 70, 836, 4030, 
5830, 7192, .... Nonprimitive weird numbers include 70p with p prime and 
p > a(70) = 144; 836p with p = 421, 487, 491, or p prime and :2: 557; also 
7192·31. Some large weird numbers were found by Kravitz, and Benkoski 
& Erdös showed that their density is positive. Here the open questions are: 
are there infinitely many primitive abundant numbers whieh are weird? 1s 
every odd abundant number pseudoperfect (i.e., not weird)? Can a(n)jn 
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be arbitrarily large for weird n? Benkoski & Erdös conjecture "no" in 
answer to the last quest ion and Erdös offers $10 and $25 respectively for 
solutions to the last two questions. 

He also asks if there are extra-weird numbers n for which a(n) > 3n, 
but n is not the sum of distinct divisors of n in two ways without repeti
tions. For example, 180 does not qualify, because although a(180) = 546, 
180=30+60+90 and is the sum of all its other divisors except 6. 

Numbers have been called multiply perfeet, multiperfeet or k-fold 
perfeet if a(n) = kn with k an integer. For example, ordinary perfect 
numbers are 2-fold perfect and 120 is 3-fold perfect. Dickson's History 
records a long interest in such numbers. Lehmer has remarked that if n is 
odd, then n is perfect just if 2n is triperfect. 

Selfridge and others have observed that there are just six known 3-
perfect numbers and they come from 2h -1 for h = 4,6,9, 10, 14, 15. For 
example, the third one is illustrated by 

a(28 ·7·73·37·19·5) = (29 - 1)(23)(37.2)(19.2)(5.22)(2.3). 

It appears that there may be a similar explanation for the 36 known 4-
perfect numbers, the last of which was published by Poulet as long aga as 
1929. 

For many years the largest known value of k was 8, for which Alan 
L. Brown gave three examples and Franqui & Garda two others. Stephen 
Gretton found numerous multiperfect numbers, including many fivefold, 
sixfold and sevenfold perfect numbers, and an eightfold, namely 
262 . 315 . 59 . 77 . 113 . 133 . 172 . 19 . 23 . 29 . 312 . 37 . 41 . 43 . 53 . 612 . 712 . 
. 73.83.89.972 .127.193.283.307.317.331.337.487.5212 .601·1201· 
·1279·2557·3169·5113·92737·649657. This is believed to be the record 
for the smallest such. 

In late 1992 and early 1993, half a dozen examples with k = 9 have 
already been found by Fred Helenius. The smallest is 
2114.335.517.712.114.135.173.198.232.292.312.374.41.43. 472 .53 . 

. 612.67.71.73.792.832.892.97.103.109.127.1312.151.157.167.1792 . 
·197·211·227·331·347·367·379·443·523·599·709·757·829·1151·1699· 
·1789·2003·2179·2999·3221 ·4271 ·4357·4603· 5167·8011 ·8647·8713· 
·14951 . 17293 . 21467 . 29989 . 110563 . 178481 . 530713 . 672827 . 4036961 . 
·218834597· 16148168401·151871210317·2646507710984041 

Can k can be as large as we wish? Erdös conjectures that k = o(ln In n). 
It has even been suggested that there may be only finitely many k-perfect 
numbers with k 2:: 3. 

Rich Schroeppel is compiling as complete a list as possible of multi
perfect numbers, and so would be a good checking point for those who 
believe that they have discovered new specimens. Since the previous three 
paragraphs were written, Shigeru Nakamura has drawn my attention to 
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the work of Motoji Yoshitake, who lists 3 5-perfect, 30 6-perfect, 35 7-
perfect and 8 8-perfect numbers. 2+20+8+0 of these are attributed to 
Carmichael, Mason or Cunningham. One of the 8-perfect numbers was 
given by Brown, and another can be derived from it by replacing 192 . 127 
by 194 ·151· 911. This substitution, found by Cunningham in 1902, can be 
applied to the Carmichael-Mason table to give 50 multiperfect numbers. 
He also notes that Carmichael & Mason mistook 137561 = 151 . 911 and 
485581 = 277 . 1753 for primes. In 1992 we knew of 700 k-perfect num
bers with k 2: 3. In January, 1993, this number leapt to about 1150 from 
the discoveries of Fred Helenius which include 114 7-perfect, 327 8-perfect 
and two 9-perfect numbers. He continues to find dozens of new ones each 
month, so it is even more impossible to keep this section of the book up-to
date than it is to keep the rest; in March the total neared 1300; a postcript 
of a 93-09-08 letter from Schroepel gave 1526; by the time he mailed it next 
day it was 1605. 

If n is an odd triperfect number, then McDaniel, Cohen, Kishore, 
Bugulov, Kishore, Cohen & Hagis, Reidlinger, and Kishore have respec
tively shown that w(n) 2: 9, 9, 10, 11, 11, 11, 12, and 12. Beck & Najar, 
Alexander, and Cohen & Hagis have shown that n > 105°,106°,107°. Co
hen & Hagis have shown that the largest prime factor of n is at least 100129 
and that the second largest is at least 1009. 

Shigeru Nakamura writes that Bugulov showed, in 1966, that odd k
perfect numbers contain at least w distinct prime factors, where (k,w) = 
(3,11), (4,21), (5,54) [incorrectly stated in MR 37 #5139 & rNT A32-96]. 
Nakamura claims to prove that for an even k-perfect number, 

w > max{k3 /81 +~, k5 /2500 + 2.9, k lO 1(14.108 ) + 2.9999} 

and for an odd k-perfect number, 

w > max{k5 /60 + g, k5 /50 - 20.8, 737klO 1109 + 11.5}. 

These improve the results of Cohen & Hendy and of Reidlinger; he also 
gives the improvements (k, w) = (4,23), (5,56), (6,142), (7,373) to those of 
Bugulov. 

Minoli & Bear say that n is k-hyperperfect if n = 1 + k I: di , where 
the summation is taken over all proper divisors, 1 < di < n, so that 
ka(n) = (k+1)n+k-1. For example, 21, 2133 and 19521 are 2-hyperperfect 
and 325 is 3-hyperperfect. They conjecture that there are k-hyperperfect 
numbers for every k. 

Ron Graham asks if s(n) = lnl2J implies that n is 2 or apower of 3. 
Erdös lets f (n) be the smallest integer for which n = I:~=l di for some 

k, where 1 = d1 < d2 < ... dl = f(n) is the increasing sequence of 
divisors of f(n). Is f(n) = o(n)? Or is this true only for almost all n, with 
limsup f(n)ln = oo? 
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n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 
J(n) 1 - 23- 547151221 6 9 13 8 123010 42191820571436463012 

Erdös defines nk to be the smallest integer for which if you partition the 
proper divisors of nk into k dasses, nk will always be the sum of distinct 
divisors from the same dass. Clearly nl = 6, but he is not even able to 
prove the existence of n2. 
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irnplies n > 10110, t ~ 51 and 249 1n; k ~ 8 implies n > 10663 and t ~ 247; 
while k odd and k ~ 5 imply n > 10461 , t ~ 166 and 2166 ln. 

Cohen calls a divisor d of an integer n a l-ary divisor of n if d l- n/d, 
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calls IfZ an infinitary divisor of p1'(y > 0) if IfZly-lp1'. This gives rise 
to infinitary analogs of earlier concepts. Write 0"00 ( n) for the surn of the 
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B4 Amicable numbers. 

Unequal numbers m, n are called amicable if each is the sum of the aliquot 
parts of the other, Le., a(m) = a(n) = m + n. Several thousand such pairs 
are known. The smaller member, 220, of the smallest pair, occurs in Gen
esis, xxxii, 14, and amicable numbers intrigued the Greeks and Arabs and 
many others since. For their history see the articles of Lee & Madachy. The 
Genesis reference, from the King James Bible, is achieved byamalgamating 
200 females and 20 males. A viezri Fraenkel writes that in his Pentateuch, 
they occur at xxxii, 15, and gives the more convincing occurrences of 220 
in Ezm viii, 20 and in 1 Chronicles xv, 6; and of 284 in Nehemiah xi, 18. 
He notes that the three places are amicably related: all are connected to 
the tribe of Levi, whose name derives from the wish of Levi's mother to be 
amicably related to his father (Genesis xxix, 34). 

It is not known if there are infinitely many, but it is believed that there 
are. In fact Erdös conjectures that the number, A(x), of such pairs with 
m < n < x is at least x1- E• He improved a result of Kanold to show that 
A(x) = o(x) and his method can be used to obtain A(x) :::; cx/lnlnlnx. 
Pomerance obtained the further improvement 

A(x) :::; xexp{ -c(lnlnlnxlnlnlnlnx)1/2}. 

Erdös conjectured that A(x) = o(x/(lnx)k) for every k whereupon Pomer
ance proved the stronger result 

A(x) :::; xexp{ -(lnx)1/3}. 

This implies that the sum of the reciprocals of the amicable numbers is 
finite, a fact not earlier known. He also notes that his proof can be modified 
to give the slightly stronger result 

A(x)« xexp{-c(1nxlnlnx)1/3}. 

Herman te lliele has found all 1427 amicable pairs whose lesser members 
are less than 1010• He remarks that the quantity A(x)(lnx)3 /X1/ 2 "remains 
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very dose to 174.6", but I suspect that a much more powerful telescope 
would require the exponent 1/2 to be increased much nearer to 1. Moews 
& Moews have continued the complete search to beyond 2 . 1011 . Through 
the efforts of Battiato and others, more than 40,000 pairs are known. 

Some very large amicable pairs, with 32, 40, 81 and 152 decimal digit
s, discovered by te Riele, are mentioned by Kaplansky under "Mathema
tics" in the 1975 Encyclopedia Britannica Yearbook. The largest previously 
known had 25 decimal digits. More recently te Riele has constructed, from 
a "mother" list of 92 known amicable pairs, more than 2000 new pairs of 
sizes up to 38 decimal digits, and five pairs with from 239 to 282 digits. 
The largest amicable pair known in mid-1993 has 1041 decimal digits: 

(29p20qlrstu, 29p20q2V) 

with p = 5661346302015448219060051; ql, q2 of shape lx?0 - 1 with 
b1 = 5797874220719830725124352, b2 = 5531348900141215019827200, 
c = 5661346302015448219060051; and r = 569, S = 5039, t = 1479911, 
u = 30636732851; and v = 136527918704382506064301. It was found by 
Holger Wiethaus, a student at Dortmund in July 1988. 

Elvin J. Lee has given half a dozen rules for amicable pairs of type 
(2n pq, 2n rs) where p, q, r, s are primes of appropriate shape. E.g., 

p = 3·2n - 1 -l, q = 35·2n +1 -29, r = 7·2n - 1 -l, s = 15·2n+1-13, 

but the simultaneous discavery af faur such primes is a rare event. 
Borho, Hoffman & te Riele have made considerable advances, both with 

proliferation of generalized Thabit rules, and with actual computation. Of 
the 1427 amicable pairs mentioned above, all but 17 lIave m+n == 0 mod 9. 
The smallest exception is Poulet's pair 

24 . 331 . { 19· 6619 
199·661 

with m + n == 5 mod 9: te Riele gives the first examples 

24 . { 192 .103.1627 
3847·16763 

2 { 132 • 37 . 43 . 139 
and 2· 19 . 41 . 151 . 6709 

with m, n even, m + n == 3 mod 9. 
It is not known if an amicable pair exists with m and n of opposite 

parity, or with m ..1 n. Bratley & McKay conjectured that both members 
of all odd amicable pairs are divisible by 3, but Battiato & Borho produced 
15 counterexamples with from 36 to 73 decimal digits. In an 87-05-15 letter 
te Riele announced a 33-digit specimen 

5.72 .112 .13.17.193 .23.37.181 { 101· 8643 ·1947938229 
365147·47303071129 
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Is this the smallest such pair? Is there an odd amicable pair with one 
member, but not both, divisible by 3? 

An old conjecture of Charles Wall is that odd amicable pairs must be 
incongruent modulo 4. 1ts truth, he says, implies that there are no odd 
perfect numbers, so it may be more prudent to look for a counterexample 
than to try to prove it. 

On p. 169 of Mathematical Magic Show, Vintage Books, 1978, Martin 
Gardner makes a conjecture about the digital roots of amicable numbers. 
Lee confirms this in part by showing that if (2npqr, 2nstu) is an amicable 
pair whose sum is not divisible by 9, then each number is congruent to 7, 
modulo 9. 

Unitary amicable numbers have been studied by Peter Hagis and 
by Mariano Garcia, who list 82 pairs. 
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H. J. J. te Riele, On generating new amicable pairs from given amicable pairs, 

Math. Comput., 42(1984) 219--223. 
Herman J. J. te Riele, New very large amicable pairs, in Number Theory Noord

wijkerhout 1983, Springer Lecture Notes in Math., 1068(1984) 210-215. 
H. J. J. te Riele, Computation of all the amicable pairs below 1010 , Math. Com

put., 47(1986) 361-368 & 89-S40. 
H. J. J. te Riele, A new method for finding amicable pairs, in Mathematics 0/ 

Computation 1943-1993 (Vancouver, 1993), Proc. Sympos. Appl. Math. 43, 
Amer. Math. Soc., Providence RI, 1994. 
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H. J. J. te lliele, W. Borho, S. Battiato, H. Hoffmann & E.J. Lee, Table 0/ Ami
cable Pairs between 1010 and 1052 , Centrum voor Wiskunde en Informatica, 
Note NM-N8603, Stichting Math. Centrum, Amsterdam, 1986. 

Dale Woods, Construction of amicable pairs, #789-10-21, Abstmcts Amer. Math. 
Soc., 3(1982) 223. 

B5 Quasi-amicable or betrothed numbers. 

Garcia has called a pair of numbers (m, n), m < n, quasi-amicable if 

a(m) = a(n) = m + n + 1. 

For example, (48,75), (140,195), (1575,1648), (1050,1925) and (2024,2295). 
Rufus Isaacs, noting that each of m and n is the sum of the proper divisors 
of the other (i.e., omitting 1 as weIl as the number itself) has much more 
appropriately named them betrothed numbers. 

M~owski gave examples of betrothed numbers and also of amicable 
tripies 

a(a) = a(b) = a(c) = a + b + c, 

e.g., 22325 . 11, 25327, 223271. Similarly, in a 92-07-20 letter, Yasutoshi 
Kohmoto calls the set {a, b, c, d} quadri-amicable if 

a(a) = a(b) = a(c) = a(d) = a + b + c + d. 

As examples which are not multiples of 3 he gives 

a = x ·173 ·1933058921·149 ·103540742849 b = x ·173 ·1933058921·15531111427499 

c = x· 336352252427 ·149·103540742849 d = x· 336352252427·15531111427499 

where x is the product of 
59 . 72 • 114 . 172 • 19 . 292 . 67 . 712 . 109 . 131 . 139 . 179 . 307 . 431 . 521 . 653 

·1019·1279·2557·3221· 5113·5171· 6949 

with a perfect number 2P- 1 Mp , M p = 2P - 1 being a Mersenne prime (see 
A3) with p > 3. 

Hagis & Lord have found all 46 pairs of betrothed numbers with m < 
107• All of them are of opposite parity. No pairs are known with m, n 
having the same parity. If there are such, then m > 1010• If m 1- n, then 
mn contains at least four distinct prime factors, and if mn is odd, then mn 
contains at least 21 distinct prime factors. 

Beck & Najar call such pairs reduced amicable pairs, and ca11 numbers 
m, n such that 

a(m)=a(n)=m+n-1 

augmented amicable pairs. They found 11 augmented amicable pairs. They 
found no reduced or augmented unitary amicable or sociable numbers (see 
B8) with n < 105. 
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WaIter E. Beck & Rudolph M. Najar, More reduced amicable pairs, Fibonacci 
Quart., 15(1977) 331-332; Zbl. 389.10004. 

Walter E. Beck & Rudolph M. Najar, Fixed points of certain arithrnetic functions, 
Fibonacci Quart., 15(1977) 337-342; Zbl. 389.10005. 

Peter Hagis & Graharn Lord, Quasi-amicable nurnbers, Math. Comput., 31 (1977) 
608-611; MR 55 #7902; Zbl. 355.10010. 

M. Lai & A. Forbes, A note on Chowla's function, Math. Comput., 25(1971) 
923-925; MR 45 #6737; Zbl. 245.10004. 

Andrzej Ml}kowski, On sorne equations involving functions ifJ(n) and a(n), Amer. 
Math. Monthly, 67(1960) 668-670; correction 68(1961) 650; MR 24 #A76. 

B6 Aliquot sequences. 

Since some numbers are abundant and some deficient, it is natural to ask 
what happens when you iterate the nmction s( n) = 0'( n) - n and produce 
an aliquot sequence, {8k(n)}, k = 0, 1, 2, .... Catalan and Dick
son conjectured that all such sequences were bounded, but we now have 
heuristic arguments and experimental evidence that some sequences, per
haps almost all of those with n even, go to infinity. The smallest n for 
which there was ever doubt was 138, but D. H. Lehmer eventually showed 
that after reaching a maximum 

8 117 (138) = 179931895322 = 2 . 61 . 929 . 1587569 

the sequence terminated at 8 177(138) = 1. The next value for which there 
continues to be real doubt is 276. A good deal of computation by Lehmer, 
subsequently assisted by Godwin, Selfridge, Wunderlich and others, pushed 
the calculation as far as 8469 (276), which was quoted in the first edition. 

Thomas Struppeck factored this term and computed two more iterates. 
Andy Guy wrote a PARI program which started from scratch and overnight 
verified all the earlier calculations and reached 8 487 (276). 

The first few sequences whose fate was unknown are the "Lehmer six" 
starting from 276, 552, 564, 660, 840 and 966. Our program has shown 
that the 840 sequence hit the prime 8 746 (840) = 601 having established a 
new record 

8287 (840) = 3463982260143725017429794136098072146586526240388 

=22 ·64970467217·6237379309797547·2136965558478112990003 

for the maximum of a terminating sequence. This has recently been beaten 
by Mitchell Dickerman who found that the 1248 sequence has length 1075 
after reaching a maximum 8583 (1248) = 

1231636691923602991963829388638861714770651073 275257 065104 = 24p 

of 58 digits. He has pursued the 276 sequence to its 628th term, which has 
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65 decimal digits. Godwin investigated the fourteen main sequenees start
ing between 1000 and 2000 whose outeome was unknown and diseovered 
that the sequenee 1848 terminated. We have found that those for 2580, 
2850, 4488, 4830, 6792, 7752, 8862 and 9540 also terminate. 

H. W. Lenstra has proved that it is possible to eonstruet arbitrarily 
long monotonie inereasing aliquot sequenees. See the quadrupIe paper cited 
under B41. The last of the following referenees has a bibliography of 60 
items eoneerning the iteration of number-theoretic funetions. 

Jack Alanen, Empirical study of aliquot series, Math. Rep., 133 Stichting Math. 
Centrum Amsterdam, 1972; see Math. Gomput., 28(1974) 878-880. 

E. Catalan, Propositions et questions diverses, Bull. Soc. Math. France, 16 (1887-
88) 128-129. 

John Stanley Devitt, Aliquot Sequences, MSc thesis, The Univ. of Calgary, 1976; 
see Math. Gomput., 32(1978) 942-943. 

J. S. Devitt, R. K. Guy & J. L. Selfridge, Third report on aliquot sequences, 
Gongr. Numer. XVIII, Proc. 6th Manitoba Conf. Numer. Math., 1976, 177-
204; MR 80d:10001. 

L. E. Dickson, Theorems and tables on the sum of the divisors of a number, 
Quart. J. Math., 44(1913) 264-296. 

Paul Erdös, On asymptotic properties of aliquot sequences, Math. Gomput., 
30(1976) 641--645. 

Andrew W. P. Guy & Richard K. Guy, Arecord aliquot sequence, in Mathematics 
of Gomputation 1943-1993 (Vancouver, 1993), Proc. Sympos. Appl. Math., 
(1994) Amer. Math. Soc., Providence RI, 1984. 

Richard K. Guy, Aliquot sequences, in Number Theory and Algebra, Academic 
Press, 1977, 111-118; MR 57 #223; Zbl. 367.10007. 

Richard K. Guy & J. L. Selfridge, Interim report on aliquot sequences, Gongr. 
Numer. V, Proc. Conf. Numer. Math., Winnipeg, 1971, 557-580; MR 49 
#194; Zbl. 266.10006. 

Richard K. Guy & J. L. Selfridge, Combined report on aliquot sequences, The 
Univ. of Calgary Math. Res. Rep. 225(May, 1974). 

Richard K. Guy & J. L. Selfridge, What drives an aliquot sequence? Math. 
Gomput., 29(1975) 101-107; MR 52 #5542; Zbl. 296.10007. Corrigendum, 
ibid., 34(1980) 319-321; MR 8lf:10008; Zbl. 423.10005. 

Richard K. Guy & M. R. Williams, Aliquot sequences near 1012 , Gongr. Numer. 
XII, Proc. 4th Manitoba Conf. Numer. Math., 1974, 387-406; MR 52 #242; 
Zbl. 359.10007. 

Richard K. Guy, D. H. Lehmer, J. L. Selfridge & M. C. Wunderlich, Second 
report on aliquot sequences, Gongr. Numer. IX, Proc. 3rd Manitoba Conf. 
Numer. Math., 1973,357-368; MR 50 #4455; Zbl. 325.10007. 

H. W. Lenstra, Problem 6064, Amer. Math. Monthly, 82(1975) 1016; solution 84 
(1977) 580. 

G. Aaron Paxson, Aliquot sequences (preliminary report), Amer. Math. 
Monthly, 63(1956) 614. See also Math. Gomput., 26 (1972) 807-809. 

P. Poulet, La chasse aux nombres, Fascicule I, Bruxelles, 1929. 
P. Poulet, Nouvelles suites arithmetiques, Sphinx, Deuxieme Annee (1932) 53-54. 
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H. J. J. te lliele, A note on the Catalan-Dickson conjecture, Math. Comput., 
27(1973) 18~192; MR 48 #3869; Zbl. 255.10008. 

H. J. J. te lliele, Iteration ofnumber theoretic functions, Report NN 30/83, Math. 
Centrum, Amsterdam, 1983. 

B7 Aliquot cycles or sociable numbers. 

Poulet discovered two cycles of numbers, showing that sk (n) can have 
the periods 5 and 28, in addition to 1 and 2. For k == 0,1,2,3,4 mod 5, 
sk(12496) takes the values 

12496 = 24 • 11 . 71, 14288 = 24 • 19·47, 15472 = 24 ·967, 

14536 = 23 .23.79, 14264 = 23 ·1783. 
For k == 0,1, ... ,27 mod 28, sk(14316) takes the values 

14316 
629072 
275444 
97946 

19116 
589786 
243760 
48976 

31704 
294896 
376736 
45946 

47616 
358336 
381028 
22976 

83328 
418904 
285778 
22744 

177792 
366556 
152990 
19916 

295488 
274924 
122410 
17716 

After a gap of over 50 years, and the advent of high-speed computing, 
Henri Cohen discovered nine cycles of period 4, and Borho, David and Root 
also discovered some. Recently Moews & Moews have marle an exhaustive 
search for such cycles with greatest member less than 1010• There are 
twenty-four: their smallest members are 

1264460 7169104 46722700 330003580 2387776550 4424606020 
2115324 18048976 81128632 498215416 2717495235 4823923384 
2784580 18656380 174277820 1236402232 2879697304 5373457070 
493813628158165 209524210 1799281330 3705771825 8653956136 

Moews & Moews give five larger 4-cycles, and, in a 90-09-01 letter, 
another whose least member is: 

26 .79.1913.226691. 207722852483 

They also found an 8-cycle: 

1095447416 1259477224 1156962296 1330251784 
1221976136 1127671864 1245926216 1213138984 

Ren Yuanhua had already found three of the 4-cycles and Achim Flam
menkamp had also found many of them, as weIl as a second 8-cycle: 

1276254780 2299401444 3071310364 2303482780 
2629903076 2209210588 2223459332 1697298124 
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and a 9-cycle: 

805984760 1268997640 1803863720 2308845400 3059220620 
3367978564 2525983930 2301481286 1611969514 
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Moews & Moews have continued their exhaustive search to uncover all 
cycles, of any length, whose member preceding the largest member is less 
than 3.6 . 1010 . There are three more 4-cycles, with least members 

15837081520, 17616303220, 21669628904, 

and a 6-cycle, all of whose members are odd: 

21548919483 = 35 .72 . 13· 17· 19·431, 23625285957 = 35 . 72 . 13· 19· 29 . 277, 
24825443643 = 32 . 72 . 11 . 13 . 19 . 20719, 26762383557 = 34 . 72 . 13 . 19 . 27299, 
25958284443 = 32 .72 . 13· 19· 167· 1427, 23816997477 = 32 . 72 . 13 . 19 . 218651. 

It has been conjectured that there are no 3-cycles. On the other hand 
it has been conjectured that for each k there are infinitely many k-cycles. 

Walter Borho, Über die Fixpunkte der k-fach iterierten Teilersummenfunktion, 
Mitt. Math. Gesellsch. Hamburg, 9(1969) 34-48; MR 40 #7189. 

Achim Flammenkamp, New sociable numbers, Math. Comput., 56(1991) 871-
873. 

David Moews & Paul C. Moews, A search for aliquot cycles below 1010 , Math. 
Comput., 57(1991) 849-855; MR 92e:11151. 

David Moews & Paul C. Moews, A search for aliquot cycles and amicable pairs, 
Math. Comput., 61(1993) 935-938. 

B8 Unitary aliquot sequences. 

The ideas of aliquot sequence and aliquot cycle can be adapted to the case 
where only the unitary divisors are summed, leading to unitary aliquot 
sequences and unitary sociable numbers. We use a* (n) and s* (n) for 
the analogs of a(n) and s(n) when just the unitary divisors are summed 
(compare B3). 

Are there unbounded unitary aliquot sequences? Here the balance is 
more delicate than in the ordinary aliquot sequence case. The only se
quences which deserve serious consideration are those involving odd mul
tiples of 6, which is a unitary perfect number as weH as an ordinary one. 
Now the sequences tend to increase if 31/n, but decrease when a higher 
power of 3 is present, and it is a moot point as to which situation will 
dominate. Once a term of a sequence is 6m, with m odd, then a*(6m) is 
an even multiple of 6, making s*(6m) an odd multiple of 6 again, except 
in the extremely rare case that m is 4 raised to an odd power. 

te Riele pursued aH unitary aliquot sequences for n < 105 . The only one 
which did not terminate or become periodic was 89610. Later calculations 
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showed that this reached a maximum, 

645856907610421353834 = 2.32 ·13 ·19·73·653·3047409443791 

at its 568th term, and terminated at its 1129th. 
One can hardly expect typical behavior until the expected number of 

prime factors is large. Since this number is In In n, such sequences are weIl 
beyond computer range. Of 80 sequences examined near 1012 , all have 
terminated or become periodic. One sequence exceeded 1023 . 

Unitary amicable pairs and unitary sociable numbers may occur rather 
more frequently than their ordinary counterparts. LaI, Tiller & Summers 
found cycles of periods 1, 2, 3, 4, 5, 6, 14, 25, 39 and 65. Examples 
of unitary amicable pairs are (56430,64530) and (1080150,1291050), while 
(30,42,54) is a 3-cycle and 

(1482,1878,1890,2142,2178) 

is a 5-cycle. 
Cohen (see B3 for definitions and a reference) finds 62 infinitary amica

ble pairs with smaller member less than a million, eight infinitary aliquot 
cycles of order 4 and three of order 6. The only other such cycle of order 
less than 17 and least member less than a million is of order 11: 

448800, 696864, 1124448, 1651584, 3636096, 6608784, 
5729136, 3736464, 2187696, 1572432, 895152. 

A type of aliquot sequence which can be unbounded has been suggested 
by David Penney & Carl Pomerance and is based on Dedekind's function: 
see B41. 

Erdös, looking for a number-theoretic function whose iterates might 
be bounded, suggested defining w(n) = n"L l/pf' where n = Ilpfi, and 
Wk(n) = w(wk- 1(n)). Note that w(n) 1- n. Can it be proved that wk(n), 
k = 1, 2, ... , is bounded? Is I{w(n) : 1 ::; n::; x}1 = o(x)? 

Erdös & Selfridge called n a barrier for a number-theoretic function 
f(m) if, for all m < n, m + f(m) ::; n. Euler's <,b-function (see B36) and 
a(m) increase too fast to have barriers, but does w(m) have infinitely many 
barriers? The numbers 2, 3, 4, 5, 6, 8, 9, 10, 12, 14, 17, 18, 20, 24, 26, 28, 
30, ... , are barriers for w(m). Does O(m) have infinitely many barriers? 
Selfridge observes that 99840 is the largest barrier for O(m) that is < 105 . 

Ml}kowski observes that n = 1 is a barrier for every function, and that 2 
is a barrier for every function f(n) with f(l) = 1; in particular for d(m), 
the number of divisors of m. The inequality 

max{d(n -1) + n -1, d(n - 2) + n - 2} :?: n + 2 

holds for n ~ 7, but not for n = 6. But d( n - 1) + n - 1 ~ n + 1 for n ~ 3, 
so d(m) has no barriers :?: 3. Does 

max(m + d(m)) = n + 2 
m<n 
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have infinitely many solutions? It is very doubtful. One solution is n = 24; 
the next larger is probably beyond computer range. 

Paul Erdös, A melange of simply posed conjectures with frustratingly elusive 
solutions, Math. Mag., 52(1979) 67-70. 

P. Erdös, Problems and results in number theory and graph theory, Congres
sus Numerantium 27, Proc. 9th Manitoba Conf. Numerical Math. Comput., 
1979,3-2l. 

Richard K. Guy & Marvin C. Wunderlich, Computing unitary aliquot sequences 
- a preliminary report, Congressus Numemntium 27, Proc. 9th Manitoba 
Conf. Numerical Math. Comput., 1979, 257-270. 

P. Hagis, Unitary amicable numbers, Math. Comput., 25(1971) 915-918; MR 45 
#8599. 

Peter Hagis, Unitary hyperperfect numbers, Math. Comput., 36(1981) 299-30l. 
M. Lai, G. Tiller & T. Summers, Unitary sociable numbers, Congressus Numer

antium 7, Proc. 2nd Manitoba Conf. Numerical Math., 1972, 211-216: MR 
50 #4471. 

H. J. J. te Riele, Unitary Aliquot Sequences, MR139/72, Mathematisch Centrum, 
Amsterdam, 1972; reviewed Math. Comput., 32(1978) 944-945; Zbl. 25l. 
10008. 

H. J. J. te Riele, Funher Results on Unitary Aliquot Sequences, NW12/73, Math
ematisch Centrum, Amsterdam, 1973; reviewed Math. Comput., 32(1978) 
945. 

H. J. J. te Riele, A Theoretical and Computational Study of Genemlized Aliquot 
Sequences, MCT72, Mathematisch Centrum, Amsterdam, 1976; reviewed 
Math. Comput., 32(1978) 945-946; MR 58 #27716. 

C. R. Wall, Topics related to the sum of unitary divisors of an integer, PhD 
thesis, Univ. of Tennessee, 1970. 

B9 Superperfect numbers. 

Suryanarayana defines superperfeet numbers n by a2 (n) = 2n, Le., 
a( a( n)) = 2n. He and Kanold show that the even ones are just the numbers 
2P- 1 where 2P - 1 is a Mersenne prime. Are there any odd superperfect 
numbers? If so, Kanold shows that they are perfeet squares, and Dandepat 
and others that n or a(n) is divisible by at least three distinct primes. 

More generally, Bode defines m-superperfect numbers as numbers 
n for which am (n) = 2n, and shows that for m 2:: 3 there are no even 
m-superperfect numbers. He also shows that for m = 2 there is no super
perfect number < 1010 . Hunsucker & Pomerance have raised this bound 
to 7 x 1024 and have unpublished results on the numbers of distinct prime 
factors of n and of a(n) if n is superperfect. 

If a2 (n) = 2n+ 1, it would be consistent with earlier terminology to call 
n quasi-superperfect. The Mersenne primes are such. Are there others? 
Are there "almost superperfect numbers" for which a 2 (n) = 2n - 1 ? 
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Erdös asks if (ak(n))l/k has a limit as k -+ 00. He conjectures that it 
is infinite for each n > 1. 

Schinzel asks if lim inf a k ( n ) / n < 00 for each k, as n -+ 00, and 0 bserves 
that it follows for k = 2 from a deep theorem of Renyi. Ml}kowski & 
Schinzel give an elementary proof for k = 2 that the limit is 1. Helmut 
Maier has used sieve methods to prove the result for k = 3. 

Dieter Bode, Über eine Verallgemeinerung der volkommenen Zahlen, Disserta
tion, Braunschweig, 1971. 

P. Erdös, Some remarks on the iterates of the cjJ and a functions, Colloq. Math., 
17(1967) 195-202. 

J. L. Hunsucker & C. Pomerance, There are no odd super perfeet numbers less 
than 7· 1024 , Indian J. Math., 17(1975) 107-120; MR 82b:1001O. 

H.-J. Kanold, Über "Super perfeet numbers," Elem. Math., 24(1969) 61-62; MR 
39 #5463. 

Graham Lord, Even perfeet and superperfeet numbers, Elem. Math., 30 (1975) 
87-88. 

Helmut Maier, On the third iterates of the tjJ- and a-functions, Colloq. Math., 
49(1984) 123-130. 

Andrzej Ml}kowski, On two conjectures of Schinzel, Elem. Math., 31(1976) 140-
14l. 

A. Ml}kowski & A. Schinzel, On the functions cjJ(n) and a(n), Colloq. Math., 
13(1964-65) 95-99. 

A. Schinzel, Ungelöste Probleme Nr. 30, Elem. Math., 14(1959) 60-6l. 
D. Suryanarayana, Super perfeet numbers, Elem. Math., 24(1969) 16-17; MR 39 

#5706. 
D. Suryanarayana, There is no superperfeet number of the form p2o<, Elem. Math., 

28(1973) 148-150; MR 48 #8374. 

BIO Untouchable numbers. 

Erdös has proved that there are infinitely many n such that s(x) = n has no 
solution. Alanen calls such n untouchable. In fact Erdös shows that the 
untouchable numbers have positive lower density. Here are the untouchable 
numbers less than 1000: 

2 5 52 88 96 120 124 146 162 178 188 206 210 216 238 246 
248 262 268 276 288 290 292 304 306 322 324 326 336 342 372 406 
408 426 430 448 472 474 498 516 518 520 530 540 552 556 562 576 
584 612 624 626 628 658 668 670 714 718 726 732 738 748 750 756 
766 768 782 784 792 802 804 818 836 848 852 872 892 894 896 898 
902 916 926 936 964 966 976 982 996 

In view of the plausibility of the Goldbach conjecture (Cl), it seems likely 
that 5 is the only odd untouchable number since if 2n + 1 = p + q + 1 with 
p and q prime, then s(pq) = 2n + 1. Can this be proved independently? 
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Are there arbitrarily long sequences of consecutive even numbers which are 
untouchable? How large can the gaps between untouchable numbers be? 

P. Erdös, Über die Zahlen der Form u(n)-n und n-fj>(n), Eiern. Math., 28(1973) 
83-86; MR 49 #2502. 

Paul Erdös, Some unconventional problems in number theory, Asterisque, 61 
(1979) 73-82; MR 81h:10001. 

BII Solutions of ma(m) = na(n). 
Leo Moser has observed that while n4>( n) determines n uniquely, na( n) does 
not. [4>(n) is Euler's totient functionj see B36.] For example, ma(m) = 
na(n) for m = 12, n = 14. The multiplicativity of a(n) now ensures an 
infinity of solutions, m = 12q, n = 14q, where q .1 42. So Moser asked if 
there is an infinity of primitive solutions, in the sense that (m * , n *) is not 
a solution for any m* = m/d, n* = n/d, d> 1. The example we've given 
is the least of the set m = 2P- 1(2Q - 1), n = 2Q- 1 (2P - 1), where 2P - 1, 
2Q - 1 are distinct Mersenne primes, so that only a finite number of such 
solutions is known. Another set of solutions is m = 27 . 32 .52 . (2P - 1), 
n = 2P- 1 .53 . 17·31, where 2P- 1 is a Mersenne prime other than 3 or 
31j also p = 5 gives a primitive solution on deletion of the common factor 
31. There are other solutions, such as m = 24 • 3 . 53 . 7, n = 211 . 52 and 
m = 29 ·5, n = 23 ·11· 31. An example with m .1 n is m = 25 .5, n = 33 .7. 
If ma(m) = na(n), is m/n bounded? 

Erdös observes that if n is squarefree, then integers of the form na( n) are 
distinct. He can also prove that the number of solutions of ma( m) = na( n) 
with m < n < x is cx + o( x). In answer to the question, are there three 
distinct numbers l, m, n such that la(l) = ma(m) = na(n), Ml}kowski 
observes that for distinct Mersenne primes Mpp 1 ~ i ~ s, we have nia(1li) 
is constant for ni = A/ M p" where A = TI,i=l M pj • Is there an infinity of 
primitive solutions of the equation a(a)/a = a(b)/b? Without restricting 
the solutions to being primitive, Erdös can show that their number with 
a < b < x is at least cx + o(x)j with the restrietion a .1 b, no solution is 
known at all. 

Erdös believes that the number of solutions of xa( x) = n is less than 
nE/ In In n for every f > 0, and says that the number may be less than (In n)c. 

P. Erdös, Remarks on number theory 11: some problems on the u function, Acta 
Arith., 5(1959) 171-177; MR 21 #6348. 

B12 Analogs with d(n), ak(n). 
Analogous questions may be asked with ak(n) in place of a(n), where ak(n) 
is the sum of the k-th powers of the divisors of n. For example, are there 
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distinct numbers m and n such that m0'2(m) = n0'2(n)? For k = 0 we have 
md(m) = nd(n) for (m, n) = (18,27), (24,32), (56,64) and (192,224). The 
last pair can be supplemented by 168 to give three distinct numbers such 
that ld(l) = md(m) = nd(n). There are primitive solutions (m, n) of shape 

where p and q = u + p . 2tu are primes, but it does not immediately follow 
that these are infinitely numerous. Many other solutions can be construct
ed; for example (27°,263 .71), (319 ,317 .5) and (55\549 ·13). 

Bencze proves the inequalities 

for 0 ~ l ~ k and gives no fewer than 60 applications. 

Mih81y Bencze, A contest problem and its application (Hungarian), Mat. Lapok 
IfjUsagi Folyoirat (Romania), 91(1986) 179--186. 

B13 Solutions of a(n) = a(n + 1). 

Sierpinski has asked if O'(n) = O'(n + 1) infinitely often. Hunsucker, Nebb 
& Stearns extended the tabulations of Ml}kowski and of Mientka & Vogt 
and have found just 113 solutions 

14, 206, 957, 1334, 1364, 1634, 2685, 2974, 4364, ... 

less than 107 . They also obtain statistics concerning the equation O'(n) = 
O'(n + l), of which Mientka & Vogt had asked: for what l (if any) is there 
an infinity of solutions? They found many solutions if l is a factorial, but 
only two solutions for l = 15 and l = 69. They also ask whether, for each 
land m, there is an n such that O'(n) + m = O'(n + l). 

One can ask corresponding quest ions for O'k(n), the sum of the k-th 
powers of the divisors of n. [For k = 0, see BI5.] The only solution of 
0'2(n) = 0'2(n + 1) is n = 6, since 0'2(2n) > 0'2(2n + 1) for n > 7 and 
0'2(2n) > 5n2 > (1T2 /8)(2n _1)2 > 0'2(2n - 1). Note that 0'2(24) = 0'2(26); 
Erdös doubts that 0'2(n) = 0'2(n + 2) has infinitely many solutions, and 
thinks that 0'3(n) = 0'3(n + 2) has no solutions at all. 

Richard K. Guy & Daniel Shanks, A constructed solution of u(n) = u(n + 1), 
Fibonacci Quart., 12(1974) 299; MR 50 #219. 

John L. Hunsucker, Jack Nebb & Robert E. Stearns, Computational results con
cerning some equations involving u(n), Math. Student, 41(1973) 285-289. 

W. E. Mientka & R. L. Vogt, Computational results relating to problems con
cerning u(n), Mat. Vesnik, 7(1970) 35-36. 
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BI4 Some irrational series. 

Is L~=l(O'k(n)/n!) irrational? It is for k = 1 and 2. 
Erdös established the irrationality of the series 

00 1 00 d(n) 
2: 2n-l = 2:~ 
n=1 n=1 

and Peter Borwein showed that 

00 1 
" and L...J qn + r n=1 

are irrational if q is an integer other than 0, ±1 and r is a rational other 
than 0 or _qn. 

Peter B. Borwein, On the irrationality of L 1/(qn + r), J. Number Theory, 
37(1991) 253-259. 

Peter B. Borwein, On the irrationality of certain series, Math. Proc. Cambridge 
Philos. Soc., 112(1992) 141-146; MR 93g:11074. 

P. Erdös, On arithmetical properties ofLambert series, J. Indian Math. Soc.(N.S.) 
12(1948) 63--66. 

P. Erdös, On the irrationality of certain series: problems and results, in New 
Advances in Transcendence Theory, Cambridge Univ. Press, 1988, pp. 102-
109. 

P. Erdös & M. Kac, Problem 4518, Amer. Math. Monthly, 60(1953) 47. Solution 
R. Breusch, 61(1954) 264-265. 

BI5 Solutions of a(q) + a(r) = a(q + r). 
Max Rumney (Eureka, 26(1963) 12) asked if the equation O'(q) + O'(r) = 
O'(q+r) has infinitely many solutions which are primitive in a sense similar 
to that used in Bll. If q + r is prime, the only solution is (q, r) = (1,2). 
If q + r = p2 where pis prime, then one of q and r, say q, is prime, and 
r = 2n k 2 where n ;::: 1 and k is odd. If k = 1, there is a solution if 
p = 2n - 1 is a Mersenne prime and q = p2 - 2n is prime; this is so for 
n = 2, 3, 5, 7, 13 and 19. For k = 3 there are no solutions, and none 
for k = 5 with n < 189. For k = 7, n = 1 and 3 give (q,r,q+r) = 
(5231,2· 72 ,732) and (213977,23 . 72 ,4632). Other solutions are (k, n) = 
(11,1) (11,3), (19,5), (25,1), (25,9), (49,9), (53,1), (97,5), (107,5), (131,5), 
(137,1), (149,5), (257,5), (277,1), (313,3) and (421,3). Solutions with 
q + r = p3 and p prime are 0'(2) + 0'(6) = 0'(8) and 

0'(11638687) + 0'(22 . 13· 1123) = 0'(2273 ) 

Erdös asks how many solutions (not necessarily primitive) are there 
with q + r < X; is it cx + o(x) or is it of higher order? If 81 < 82 < .,. are 
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the numbers for which O"(Si) = O"(q) + O"(Si - q) has a solution with q < Si, 
what is the density of the sequence {Si}? 

M. Sugunamma, PhD thesis, Sri Venkataswara Univ., 1969. 

B16 Powerful numbers. 

Erdös & Szekeres studied numbers n such that if a prime p divides n, then pi 
divides n where i is a given number greater than one. Golomb named these 
numbers powerful and exhibited infinitely many pairs of consecutive ones. 
In answer to bis conjecture that 6 was not representable as the difference of 
two powerful numbers, Wladyslaw Narkiewicz noted that 6 = 54 73 - 4632 , 

and that there were infinitely many such representations. In fact in 1971 
Richard P. Stanley (unpublished) used the theory of the Pell equation to 
show that every non-zero integer is the difference between two powerful 
numbers and that 1 is the difference between two non-square powerful 
numbers, each in infinitely many ways. 

Erdös denotes by u~k) < u~k) < ... the integers all of whose prime 
factors have exponents ~ kj sometimes called k-ful numbers. He asks if 
the equation U~~l - u~2) = 1 has infinitely many solutions which do not 
come from Pell equations x2 _dy2 = ±l. Is there a constant c, such that the 
number of solutions with Ui < x is less than (lnxY? Does U~~l - u~3) = 1 

have no solutions? Do the equations U~~2 - U~~l = 1, U~~l - U~2) = 1 have 
no simultaneous solutions? And several other questions, some of which 
have been answered by Ml}kowski. 

For example, Ml}kowski notes that 73 x2 - 33 y2 = 1 has infinitely many 
solutions, and that this is not usually counted as a Pell equation. He also 
notes that 

are k-ful numbers in A.P., and that if al, a2, ... , as are k-ful and in A.P. 
with common difference d then 

... , 

are S + 1 such numbers. As 

k( I l)k k+l( I l)k k+l( I l)k k( I )k+l a a + ... + +a a + ... + + ... +a a + ... + =a a + ... +1 , 

the sum of I + 1 k-ful numbers can be k-ful. He says that these last two 
quest ions become difficult when we require that the numbers be relatively 
prime. However, Nitaj constructs three infinite families of solutions of 
x + y = z in relatively prime 3-ful numbers. A specific example is 

173 . 1062193 + 27 . 34 . 53 . 73 . 22873 = 373 . 1973 . 3073 
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Heath-Brown has shown that every sufficiently large number is the sum 
of three powerful numbers; his proof would be much shortened if his con
jecture could be proved that the quadratic form x 2 + y2 + 125z2 represents 
every sufficiently large n == 7 mod 8. Erdös suggested that this may fol
low from work of Duke and Iwaniec: in fact see the forthcoming paper by 
Moroz. 

Are there only finitely many powerful numbers n such that n2 - 1 is 
also powerful? (See the Granville reference at D2.) 

Gerry Myerson notes that the following conjecture is still open. If p is an 
odd prime and u, v are the smallest positive integers such that u2 _pv2 = 1, 
then 

" pfv ? 
This has been verified for p == 1 mod 4, p < 6270713 and for p == -1 mod 4, 
p < 7679299. The conjecture is false if p is not prime; Myerson believes 
that 46 and 430 are the two smallest counterexamples. 

N. C. Ankeny, E. Artin & S. Chowla, The class-number of real quadratic number 
fields, Ann. 0/ Math.(2), 56(1952) 479-493; MR 14, 251. 

B. D. Beach, H. C. Williams & C. R. Zarnke, Some computer results on units in 
quadratic and cubic fields, Proe. 25th Summer Meet. Canad. Math. Congress, 
Lakehead, 1971, 609-648; MR 49 #2656. 

David Drazin & Robert Gilmer, Complements and comments, Amer. Math. 
Monthly, 78(1971) 1104-1106 (esp. p. 1106). 

W. Duke, Hyperbolic distribution problems and half-integral weight Maass forms, 
Invent. Math., 92(1988) 73-90; MR 89d:11033. 

P. Erdös, Problems and results on consecutive integers, Eureka, 38(1975-76) 3-8. 
P. Erdös & G. Szekeres, Über die Anzahl der Abelschen Gruppen gegebener 

Ordnung und über ein verwandtes zahlentheoretisches Problem, Acta Litt. 
Sei. Szeged, 7(1934) 95-102; Zbl. 10, 294. 

S. W. Golomb, Powerful numbers, Amer. Math. Monthly, 77(1970) 848-852; MR 
42 #1780. 

D. R. Heath-Brown, Ternary quadratic forms and sums of three square-full 
numbers, Seminaire de Theorie des Nombres, Paris, 1986-87, Birkhäuser, 
Boston, 1988; MR 91b:11031. 

D. R. Heath-Brown, Sums of three square-full numbers, in Number Theory, I 
(Budapest, 1987), Colloq. Math. Soe. Janos Bolyai, 51(1990) 163-171; MR 
9li:11036. 

D. R. Heath-Brown, Square-full numbers in short intervals, Math. Proe. Cam
bridge Philos. Soe., 110(1991) 1-3; MR 92c:1l090. 

Aleksander Ivic, On the asymptotic formulas for powerful numbers, Publ. Math. 
Inst. Beograd (N.S.), 23(37)(1978) 85-94; MR 58 #21977. 

A. Ivic & P. Shiu, The distribution ofpowerful integers, Illinois J. Math., 26(1982) 
576-590; MR 84a:10047. 

H. Iwaniec, Fourier coefficients of modular forms of half-integral weight, Invent. 
Math., 87(1987) 385-401; MR 88b:ll024. 
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C.-H. Jia, On square-full numbers in short intervals, Acta Math. Sinica (N.S.) 
5(1987) 614-621. 

Liu Hong-Quan, On square-full numbers in short intervals, Acta Math. Sinica 
(N.S.), 6(1990) 148-164; MR 91g:11105. 

Andrzej Ml}kowski, On a problem of Golomb on powernIl numbers, Amer. Math. 
Monthly, 79(1972) 761. 

Andrzej Ml}kowski, Remarks on some problems in the elementary theory of num
bers, Acta Math. Univ. Comenian., 50/51(1987) 277-281; MR 90e:11022. 

Wayne L. MeDaniel, Representations of every integer as the differenee of powerful 
numbers, Fibonacci Quart., 20(1982) 85-87. 

Riehard A. Mollin, The power of powerful numbers, Internat. J. Math. Math. 
Sei., 10(1987) 125-130; MR 88e:11008. 

Richard A. Mollin & P. Gary Walsh, On non-square powerful numbers, Fibonacci 
Quart., 25(1987) 34-37; MR 88f:11006. 

Riehard A. Mollin & P. Gary Walsh, On powerful numbers, Internat. J. Math. 
Math. Sei., 9(1986) 801-806; MR 88f:11005. 

Riehard A. Mollin & P. Gary Walsh, A note on powerful numbers, quadratie 
fields and the Pellian, CR Math. Rep. Acad. Sei. Canada, 8(1986) 109-114; 
MR 87g:11020. 

Richard A. Mollin & P. Gary Walsh, Proper differenees of non-square pow
erful numbers, CR Math. Rep. Acad. Sei. Canada, 10(1988) 71-76; MR 
8ge:11003. 

L. J. Mordell, On a pellian equation eonjeeture, Acta Arith., 6(1960) 137-144; 
MR 22 #9470. 

B. Z. Moroz, On representation of large integers by integral ternary positive 
definite quadratie forms, Journees Arithmetiques, Geneva. 

Abderrahmane Nitaj, On a eonjeeture of Erdös on 3-powerful numbers, London 
Math. Soc., (submitted). 

Peter Georg Schmidt, On the number of square-full integers in short intervals, Ac
ta Arith., 50(1988) 195-201; eorrigendum, 54(1990) 251-254; MR 89f:11131. 

W. A. Sentanee, Oeeurrenees of eonseeutive odd powerful numbers, Amer. Math. 
Monthly, 88(1981) 272-274. 

P. Shiu, On square-full integers in a short interval, Glasgow Math. J., 25 (1984) 
127-134. 

P. Shiu, The distribution of eube-full numbers, Glasgow Math. J., 33(1991) 287-
295. MR 92g:11091. 

P. Shiu, Cube-full numbers in short intervals, Math. Proc. Cambridge Philos. 
Soc., 112 (1992) 1-5; MR 93d:11097. 

A. J. Stephens & H. C. Williams, Some eomputational results on a problem 
eoneerning powerful numbers, Math. Comput., 50(1988) 619-632. 

D. Suryanarayana, On the distribution of some generalized square-full integers, 
Pacific J. Math., 72(1977) 547-555; MR 56 #11933. 

D. Suryanarayana & R. Sitaramachandra Rao, The distribution of square-full 
integers, Ark. Mat., 11(1973) 195-201; MR 49 #8948. 

Charles Vanden Eynden, Differenees between squares and powerful numbers, 
*816-11-305, Abstracts Amer. Math. Soc., 6(1985) 20. 

David T. Walker, Conseeutive integer pairs of powerful numbers and related Dia
phantine equations, Fibonacci Quart., 14(1976) 111-116; MR 53 #13107. 
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Yuan Ping-Zhi, On a conjecture of Golomb on powerful numbers (Chinese. Eng
lish summary), J. Math. Res. Exposition, 9(1989) 453-456; MR 91c:ll009. 

BI7 Exponential-perfect numbers. 

If n = p~l p~2 ... p~r, then Straus & Subbarao call d an exponential 
divisor (e-divisor) ofn if dln and d = p~lp~2 ... p~r where bjlaj (1 ~ j ~ r), 
and they call n e-perfect if O"e(n) = 2n, where O"e(n) is the sum of the 
e-divisors of n. Some examples of e-perfect numbers are 

26.32.72.132, 26.33.52.72.132, 

and 

If m is squarefree, O"e(m) = m, so if n is e-perfect and m is squarefree with 
m 1- n, then mn is e-perfect. So it suffices to consider only powerful (B16) 
e-perfect numbers. 

Straus & Subbarao show that there are no odd e-perfect numbers, in fact 
no odd n which satisfy 0" e (n) = kn for any integer k > 1. They also show 
that for each r the number of (powerful) e-perfect numbers with r prime 
factors is finite, and that the same holds for e-multiperfect numbers 
(k > 2). 

Is there an e-perfect number which is not divisible by 3? 
Straus & Subbarao conjecture that there is only a finite number of 

e-perfect numbers not divisible by any given prime p. 
Are there any e-multiperfect numbers? 

E. G. Straus & M. V. Subbarao, On exponential divisors, Duke Math. J., 41(1974) 
465-471; MR 50 #2053. 

M. V. Subbarao, On some arithmetic convolutions, Prac. Gonf. Kalamazoo MI, 
1971, Springer Lecture Notes in Math., 251(1972) 247-271; MR 49 #2510. 

M. V. Subbarao & D. Suryanarayana, Exponentially perfeet and unitary perfect 
numbers, Notices Amer. Math. Soc., 18(1971) 798. 

BIS Solutions of d(n) = d(n + 1). 

Claudia Spiro has proved that d(n) = d(n + 5040) has infinitely many so
lutions and Heath-Brown used her ideas to show that there are infinitely 
many numbers n such that d( n) = d( n + 1), and Pinner has extended this 
to d( n) = d( n + a) for any integer a. Many examples arise from pairs of 
consecutive numbers which are products of just two distinct primes, and 
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it has been conjectured that there is an infinity of triples of consecutive 
products of two primes, n, n + 1, n + 2. For example, n = 33,85,93, 141, 
201, 213, 217, 301, 393, 445, 633, 697, 921, .... It is clearly not possible 
to have Jour such numbers, but it is possible to have longer sequences of 
consecutive numbers with the same number of divisors. For example, 

d(242) = d(243) = d(244) = d(245) = 6 and 

d(40311) = d(40312) = d(40313) = d(40314) = d(40315) = 8. 

How long can such sequences be? In an 87-07-16 letter Stephane Van
demergel sent the sequence of seven numbers: 171893 = 19· 83 . 109, 
171894 = 2 . 3 . 28649, 171895 = 5 . 31 . 1109, 171896 = 23 . 21487, 
171897 = 3 . 11 . 5209, 171898 = 2 . 61 . 1409, 171899 = 7· 13 . 1889, 
each with 8 divisors. In 1990, Ivo Düntsch & Roger Eggleton discovered 
several such sequences of 7 numbers, two of 8 and one of 9, each with 48 
divisors; the last example starts at 17796126877482329126044, presumably 
not the smallest of its kind. 

Erdös believes that there are sequences of length k for every k, but does 
not see how to give an upper bound for k in terms of n. 

Erdös, Pomerance & Sarközy showed that the number of n ::; x with 
d(n) = d(n + 1) is « xj(lnlnx)1/2, and Hildebrand showed that this 
number is» xj(lnlnx)3. The former authors also showed that the number 
of n::; x with the ratio d(n)jd(n + 1) in the set {2-3,2-2,2-1, 1,2,22,23} 
is :::::: xj(lnlnx)1/2. 

Erdös showed that the density of numbers n with d( n + 1) > d( n) is ~. 
This, with the above results, settles a conjecture of S. Chowla. Fabrykowski 
& Subbarao extend this to the case with n + h in place of n + 1. 

Erdös also lets 
1 = d1 < d2 < ... < d.,. = n 

be the set of all divisors of n, listed in order, defines 

.,.-1 

J(n) = L di j di+1 
1 

and asks us to prove that L~=1 J(n) = (1 + o(l))xlnx. 
Erdös & Mirsky ask for the largest k so that the numbers d(n), d(n+ 1), 

... , d(n + k) are all distinct. They only have trivial bounds; probably 
k=(lnn)c. 

P. Erdös, Problem P. 307, Canad. Math. Bull., 24(1981) 252. 
P. Erdös & L. Mirsky, The distribution of values of the divisor function d(n), 

Proc. London Math. Soc.(3), 2(1952) 257-271. 
P. Erdös, C. Pomerance & A. Slirközy, On locally repeated values of certain arith

metic functions, 11, Acta Math. Hungarica, 49(1987) 251-259; MR 88c:11008. 
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J. Fabrykowski & M. V. Subbarao, Extension of a result of Erdös concerning the 
divisor function, Utilitas Math., 38(1990) 175-181; MR 92d:lllOl. 

D. R. Heath-Brown, A parity problem from sieve theory, Mathematika, 29 (1982) 
1-6 (esp. p. 6). 

D. R. Heath-Brown, The divisor function at consecutive integers, Mathematika, 
31(1984) 141-149. 

Adolf Hildebrand, The divisors function at consecutive integers, Paeific J. Math., 
129 (1987) 307-319; MR 88k:ll062. 

M. Nair & P. Shiu, On some results of Erdös and Mirsky, J. London Math. 
Soc.(2), 22(1980) 197-203; and see ibid., 17(1978) 228-230. 

C. Pinner, M.Sc. thesis, Oxford, 1988. 
A. Sehinzel, Sur un probleme concernant le nombre de diviseurs d'un nombre 

naturei, Bull. Acad. Polon. Sei. Sero sei. math. astr. phys., 6(1958) 165-167. 
A. Sehinzel & W. Sierpinski, Sur certaines hypotheses concernant les nombres 

premiers, Acta Arith., 4(1958) 185-208. 
W. Sierpinski, Sur une question concernant le nombre de diviseurs premiers d'un 

nombre naturei, Colloq. Math., 6(1958) 209-210. 

B19 (m, n + 1) and (m + 1, n) with same set of 
prime factors. 

Motzkin & Straus asked for all pairs of numbers m, n such that m and n+ 1 
have the same set of distinct prime factors, and similarly for n and m + 1. 
It was thought that such pairs were necessarily of the form m = 2k + 1, 
n = m 2 - 1 (k = 0, 1, 2, ... ) until Conway observed that if m = 5 . 7, 
n + 1 = 54 .7, then n = 2.37 , m + 1 = 22 .32• Are there others? 

Similarly, Erdös asks if there are numbers m, n (m < n) other than 
m = 2k - 2, n = 2k (2k - 2) such that m and n have the same prime factors 
and similarly for m+l, n+1. Ml}kowski found the pair m = 3.52 , n = 35 .5 
for which m + 1 = 22 • 19, n + 1 = 26 • 19. Compare problem B29. 

Pomerance has asked if there are any odd numbers n > 1 such that n 
and a(n) have the same prime factors. He conjectures that there are not. 

The example 1 + 2 . 37 = 54 7 in the first paragraph is of interest in 
connexion with the "ABC conjecture": 

Many of the dassical problems of number theory (Goldbach conjecture, 
twin primes, the Fermat problem, Waring's problem, the Catalan conjec
ture) owe their difficulty to a dash between multiplication and addition. 
Roughly, if there's an additive relation between three numbers, their prime 
factors can't all be small. 

Suppose that A + B = C with gcd(A, B, C) = 1. Define the radical R 
to be the maximum squarefree integer dividing ABC and the power P by 

p = Inmax(IAI,IBI, ICI) 
InR 
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then for a given 'Tl are there only finitely many tripIes {A, B, C} with P 2:: 'Tl? 
Astronger form of this conjecture is that lim sup P = 1; both forms of the 
conjecture seem to be hopelessly beyond reach. The example just given is 
the fifth in the list below. 

Joe Kanapka, a student of Noam Elkies, has produced a list of all 
examples with C < 232 and P > 1.2. There are nearly 1000 of them. The 
"top ten" as far as I know are 

P A B C author 
1.629912 2 310 ·109 235 Reyssat 
1.625991 112 32 .56 .73 221 ·23 de Weger(DlO) 
1.623490 19·1307 7.292 .318 28 .322 .54 Browkin-Brzezinski 
1.580756 283 511 .132 28 .38 . 173 Br-Br, Nitaj 
1.567887 1 2.37 54 .7 Lehmer(B29) 
1.547075 73 310 211 ·29 de Weger 
1.526999 13.196 230 .5 313 .112 .31 Nitaj 
1.502839 239 58 . 173 210 .374 Br-Br, Nitaj 
1.497621 52 .7937 713 218 .37 .132 de Weger 
1.492432 22 ·11 32 .1310 ·17 ·151· 4423 59 .1396 Nitaj 

Browkin & Brzezinski generalize the ABC-conjecture (which is their 
case n = 3) to an "n-conjecture" on a1 + ... + an = 0 in coprime inte
gers with non-vanishing subsums. With R and P defined analogously, they 
conjecture that lim sup P = 2n - 5. They prove that lim sup P 2:: 2n - 5. 
They give a lot of examples for the ABC-conjecture with P > 1.4. Their 
method is to look for rational numbers approximating roots of integers 
(note that the best example above is connected to the good approxima
tion 23/9 for 1091/ 5 ). Abderrahmane Nitaj used a similar method. Some 
of these were found independently by Robert Styer (DIO). The Catalan 
relation 1 + 23 = 32 gives a comparatively poor P ~ 1.22629. 

For connexions between the ABC conjecture and the Fermat problem, 
see the Granville references at D2. Indeed, if A = aP , B = fiP, C = cP and 
the Fermat equation A + B = C is satisfied, then the elliptic curve 

y2 = x(x - A)(x + B) 

has discriminant (4ABC)2. 

Jerzy Browkin & Juliusz Brzezinski, Some remarks on the abc-conjecture, Math. 
Comput., (to appear). 

Noam D. Elkies, ABC implies Mordell, Internat. Math. Res. Notices, 1991 no. 7, 
99-109; MR 93d:11064. 

Serge Lang, Old and new conjectured diophantine inequalities, Bull. Amer. Math. 
Soc., 23(1990) 37-75. 

A. Ml}kowski, On a problem of Erdös, Enseignement Math.(2), 14(1968) 193. 
Abderrahmane Nitaj, 1993 preprint. 
Andnl.s Sarközy, On sums a + band numbers of the form ab + 1 with many prime 

factors, Österreichisch- Ungarisch-Slowakisches Kolloquium über Zahlenthe
orie (Maria Trost, 1992), 141-154, Grazer Math. Ber., 318 Karl-Franzens
Univ. Graz, 1993. 
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C. L. Stewart & Yu Kun-Rui, On the abc conjecture, Math. Ann., 291(1991) 
225-230; MR 92k:11037. 

R. Tijdeman, The number of solutions of Diophantine equations, in Number 
Theory, 11 (Budapest, 1987), Colloq. Math. Soc. Janos Bolyai, 51(1990) 
671---696. 

B20 Cullen numbers. 

Some interest has been shown in the Cullen numbers, n . 2n + 1, which 
are all composite for 2 :::; n :::; 1000, except for n = 141. This is probably 
a good example of the Strong Law of Small Numbers, because for small n, 
where the density of primes is large, the Cullen numbers are very likely to 
be composite because Fermat's (little) theorem tells us that (P-l)2P- 1 + 1 
and (p - 2)2P- 2 + 1 are both divisible by p. Moreover, as John Conway 
observes, the Cullen numbers are divisible by 2n - 1 if that is a prime 
of shape 8k ± 3. He asks if p and p . 2P + 1 can both be prime. Wilfrid 
Keller notes that Conway's remark can be generalized as folIows. Write 
Cn = n . 2n + 1, W n = n . 2n - 1: then a prime p divides C(p+l)/2 and 
W(3p-l)/2 or it divides C(3p-l)/2 and W(p+1)/2 according as the Legendre 

symbol (see F5) 0) is -1 or +1. Keller has found prime Cullen numbers 

with n = 4713, 5795, 6611 and 18496. There are no others with n :::; 30000. 
Rieselobserves that the corresponding numbers n . 2n - 1 are prime for 

n = 2, 3, 6, 30, 75, 81 and 115; Jönsson for n = 362 and Keller for n = 123, 
249, 384, 462, 512 (Le. M 521 ), 751,882, 5312, 7755,9531, 12379, 15822 and 
18885. Many of these were also found by Waldemar GorzkowskL There 
are no others with n :::; 20000. In parallel with Conway's question above, 
Keller notes that here 3, 751 and 12379 are primes. 

Ingemar Jönsson, On certain primes of Mersenne-type, Nordisk Tidskr. Inform
ationsbehandling (BIT), 12 (1972) 117-118; MR 47 #120. 

Wilfrid Keller, New Cullen primes, (92-11-20 preprint). 
Hans Riesel, En Bok om Primtal (Swedish), Lund, 1968; supplement Stockholm, 

1977; MR 42 #4507, 58 #10681. 

B21 k· 2n + 1 composite for all n. 

Let N(x) be the number of odd positive integers k, not exceeding x, such 
that k· 2n + 1 is prime for no positive integer n. Sierpinski used covering 
congruences (see F13) to show that N(x) tends to infinity with x. For 
example, if 

k == 1 mod 641· (232 -1) and k == -1 mod 6700417, 
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then every member of the sequence k· 2n + 1 (n = 0, 1, 2, ... ) is divisible 
by just one of the primes 3, 5, 17, 257, 641, 65537 or 6700417. He also 
noted that at least one of 3, 5, 7, 13, 17, 241 will always divide k . 2n + 1 
for certain other values of k. 

Erdös & Odlyzko have shown that 

What is the least value of k such that k· 2n + 1 is composite for all values 
of n? Selfridge discovered that one of 3, 5, 7, 13, 19, 37, 73 always divides 
78557 . 2n + 1. He also noted that there is a prime of the form k . 2n + 1 
for each k < 383 and Hugh Williams discovered the prime 383 . 26393 + 1. 

In the first edition we wrote that the determination of the least k may 
now be within computer reach, though Keller has expressed his doubts 
about this. Extensive calculations have been made by Baillie, Cormack 
& Williams, by Keller, and by Buell & Young. The answer seems almost 
certain to be k = 78557, but there remain the 35 possibilities 

4847 5297 5359 7013 10223 13787 19249 21181 22699 24737 
25819 27653 27923 28433 33661 34999 39781 44131 46157 46187 
46471 47897488335069354767554595956960443 60541 63017 
65567676076910974191 74269 

for none of which is there a prime with n :::; 50000. 
A very full bibliography is appended to the thorough survey of the 

subject in the second of Keller's papers. 

Robert Baillie, New primes of the form k· 2n + 1, Math. Comput., 33(1979) 
1333-1336; MR 80h:l0009. 

Robert Baillie, G. V. Cormack & H. C. Williams, The problem of Sierpinski con
cerning k· 2n + 1, Math. Comput., 37(1981) 229-231; corrigendum, 39(1982) 
308. 

Wieb Bosma, Explicit primality criteria for h· 2k ± 1, Math. Comput., 61(1993) 
97-109. 

D. A. Buell & J. Young, Some large primes and the Sierpinski problem, SRC 
Technical Report 88-004, Supercomputing Research Center, Lanham MD, 
May 1988. 

G. V. Cormack & H. C. Williams, Some very large primes of the form 
k . 2n + 1, Math. Comput., 35(1980) 1419-1421; MR 8li:10011; corrigen
dum, Wilfrid Keller, 38(1982) 335; MR 82k:l0011. 

Paul Erdös & Andrew M. Odlyzko, On the density of odd integers of the form 
(P-l)2-n and related questions, J. Number Theory, 11(1979) 257-263; MR 
80i:l0077. 

G. Jaeschke, On the smallest k such that all k· 2N + 1 are composite, Math. 
Comput., 40(1983) 381-384; MR 84k:l0006; corrigendum, 45(1985) 637; 
MR 87b:11009. 
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Wilfrid Keller, Factors of Fermat numbers and large primes of the form 
k . 2n + 1, Math. Comput., 41(1983) 661-673; MR 85b:I1119; 11 (incom
plete draft, 92-02-19). 

Wilfrid Keller, Woher kommen die größten derzeit bekannten Primzahlen? Mitt. 
Math. Ges. Hamburg, 12(1991) 211-229;MR 92j:11006. 

N. S. Mendelsohn, The equation ljJ(x) = k, Math. Mag., 49(1976) 37-39; MR 53 
#252. 

Raphael M. Robinson, Areport on primes of the form k· 2n + 1 and on factors of 
Fermat numbers, Proc. Amer. Math. Soc., 9(1958) 673-681; MR 20 #3097. 

J. L. Selfridge, Solution of problem 4995, Amer. Math. Monthly, 70(1963) 101. 
W. Sierpinski, Sur un probleme concernant les nombres k· 2n + 1, Elem. Math., 

15(1960) 73-74; MR 22 #7983; corrigendum, 17(1962) 85. 
W. Sierpinski, 250 Problems in Elementary Number Theory, Elsevier, New York, 

1970, Problem 118, pp. 10 & 64. 
R. G. Stanton & H. C. Williams, Further results on covering of the integers 

1 + k2n by primes, Combinatorial Math. VIII, Lecture Notes in Math., 884, 
Springer-Verlag, Berlin-New York, 1980, 107-114. 

B22 Factorial n as the product of n large factors. 

Straus, Erdös & Selfridge have asked that n! be expressed as the produet 
of n faetors, with the least one, l, as large as possible. For example, for 
n = 56, l = 15, 

56! = 15· 163 . 173 • 188 . 192 .2012 .219 .225 .232 .264 .29.31.37.41 ·43·47·53 

Selfridge has two eonjeetures: (a) that, exeept for n = 56, l ~ L2n/7J; 
(b) that for n ~ 300000, l ~ n/3. If the latter is true, by how mueh ean 
300000 be redueed? 

Straus was reputed to have shown that for n > no = no(€), l > n/(e+€), 
but a proof was not found in his Nachlaß. It is dear from Stirling's formula 
that this is best possible. It is also dear that l is a monotonie, though not 
strietly monotonie, inereasing funetion of n. On the other hand it does not 
take all integer values: for n = 124, 125, l is respeetively 35 and 37. Erdös 
asks how large the gaps in the values of l ean be, and ean 1 be eonstant for 
arbitrarily long stretches? 

Alladi & Grinstead write n! as a produet of prime powers each as large 
as n6(n) and let a(n) = max8(n) and show that limn --+oo a(n) = ec- 1 = a, 
say, where 

00 1 k 
C = L k In k _ 1 so that a = 0.809394020534 . .. . 

2 

K. Alladi & C. Grinstead, On the decomposition of n! into prime powers, J. 
Number Theory, 9(1977) 452-458; MR 56 #11934. 

P. Erdös, Some problems in number theory, Computers in Number Theory, Aca
demic Press, London & New York, 1971,405-414. 
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B23 Equal products of factorials. 

Suppose that n! = al!a2!'" art, r ~ 2, al ~ a2 ~ ... ~ ar ~ 2. A trivial 
example is al = a2!'" art -1, n = a2!'" art Dean Hickerson not es that the 
only nontrivial examples with n ~ 410 are 9! = 7!3!3!2!, 1O! = 7!6! = 7!5!3! 
and 16! = 14!5!2! and asks if there are any others. Jeffrey Shallit & Michael 
Easter have extended the search to n = 18160. 

Erdös observes that if P( n) is the largest prime factor of n and if it 
were known that P( n( n + 1)) / In n tends to infinity with n, then it would 
follow that there are only finitely many nontrivial examples. 

He & Graham have studied the equation y2 = al!a2!'" art They define 
the set Fk to be those m for which there is a set of integers m = al > a2 > 
... > ar with r ~ k which satisfies this equation for some y, and write 
Dk for Fk - Fk-l. They have various results, for example: for almost all 
primes p, 13p does not belong to F5 ; and the least element of D6 is 527. If 
D4 (n) is the number of elements of D4 which are ~ n, they do not know 
the order of growth of D4 (n). They conjecture that D6 (n) > cn but cannot 
prove this. 

Earl Ecklund & Roger Eggleton, Prime factors of consecutive integers, Amer. 
Math. Monthly, 79(1972) 1082-1089. 

E. Ecklund, R. Eggleton, P. Erdös & J. L. Selfridge, on the prime factorization of 
binomial coefficients, J. Austral. Math. Soc. Sero A, 26(1978) 257-269; MR 
80e:10009. 

P. Erdös, Problems and results on number theoretic properties of consecutive 
integers and related questions, Congressus Numerantium XVI (Proe. 5th 
Manitoba Conf. Numer. Math. 1975),25-44. 

P. Erdös & R. L. Graham, On products of factorials, Bull. Inst. Math. Acad. 
Sinica, Taiwan, 4(1976) 337-355. 

B24 The largest set with no member dividing 
two others. 

Let f(n) be the size of the largest subset of [1, n) no member of which 
divides two others. Erdös asks how large can f(n) be? By taking 
[m + 1, 3m + 2] it is clear that one can have f2n/31. D.J. Kleitman shows 
that f(29) = 21 by taking [11,30] and omitting 18, 24 and 30, which then 
allows the inclusion of 6,8,9 and 10. However, this example does not seem 
to generalize. In fact Lebensold has shown that if n is large, then 

O.6725n ~ f(n) ~ O.6736n. 

Erdös also asks if limf(n)/n is irrational. 
Dually, one can ask for the largest number of numbers ~ n, with no 

number a multiple of any two others. Kleitman's example serves this pur-
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pose also. More generally, Erdös asks for the largest number of numbers 
with no one divisible by k others, for k > 2. For k = 1, the answer is r n/21. 

For some related problems, see E2. 

Driss Abouabdillah & Jean M. Turgeon, On a 1937 problem of Paul Erdös 
concerning certain finite sequences of integers none divisible by another, 
Proc. 15th S.E. Conf. Combin. Graph Theory Comput., Baton Rouge, 1984, 
Gongr. Numer., 43(1984) 19-22; MR 86h:11020. 

P. Erdös, On a problem in elementary number theory and a combinatorial prob
lem, Math. Gomput., (1964) 644-646; MR 30 #1087. 

Kenneth Lebensold, A divisibility problem, Studies in Appl. Math., 56(1976-77) 
291-294; MR 58 #21639. 

Emma Lehmer, Solution to Problem 3820, Amer. Math. Monthly, 46(1939) 240-
241. 

B25 Equal sums of geometic progressions with 
prime ratios. 

Bateman asks if 31 = (25 - 1)/(2 - 1) = (53 - 1)/(5 - 1) is the only prime 
which is expressible in more than one way in the form (pr - 1) / (p - 1) 
where p is prime and r 2: 3 and d 2: 1 are integers. Trivially one has 
7 = (23 - 1)/(2 - 1) = ((-3)3 - 1)/(-3 - 1), but there are no others 
< 1010• If the condition that p be prime is relaxed, the problem goes back 
to Goormaghtigh and we have the solution 

8191 = (213 -1)/(2 -1) = (903 - 1)/(90 -1) 

E. T. Parker observed that the very long proof by Feit & Thompson 
that every group of odd order is solvable would be shortened if it could be 
proved that (Pq - 1) / (p - 1) never divides (qP - 1) / (q - 1) where p, q are 
distinct odd primes. In fact it has been conjectured that that these two 
expressions are relatively prime, but Nelson Stephens noticed that when 
p = 17, q = 3313 they have a common factor 2pq + 1 = 112643. McKay 
has established that p2 + P + 1 t 3P - 1 for p < 53 . 106 . 

P. T. Bateman & R. M. Stemmler, Waring's problem for algebraic number fields 
and primes of the form (pr _l)/(pd -1), Illinois J. Math., 6(1962) 142-156; 
MR 25 #2059. 

Ted Chinburg & Melvin Henriksen, Sums of kth powers in the ring of polynomials 
with integer coefficients, Bult. Amer. Math. Soc., 81(1975) 107-110; MR 51 
#421; Acta Arith., 29(1976) 227-250; MR 53 #7942. 

A. M~owski & A. Schinzel, Sur l'equation indeterminee de R. Goormaghtigh, 
Mathesis, 68(1959) 128-142; MR 22 # 9472; 70(1965) 94-96. 

N. M. Stephens, On the Feit-Thompson conjecture, Math. Gomput., 25(1971) 
625; MR 45 #6738. 



82 B. Divisibility 

B26 Densest set with no l pairwise coprime. 

Erdös asks what is the maximum k so that the integers ai, 1 ~ al < a2 < 
. .. < ak ~ n have no l among them which are pairwise relatively prime. 
He conjectures that this is the number of integers ~ n which have one of 
the first l - 1 primes as a divisor. He says that this is easy to prove for 
l = 2 and not difficult for l = 3; he offers $10.00 for a general solution. 

Dually one can ask for the largest subset of [1, nJ whose members have 
pairwise least common multiples not exceeding n. If g(n) is the cardinality 
of such a maximal subset, then Erdös showed that 

3 _n l / 2 _ 2 < g(n) < 2n l / 2 
2V2 -

where the first inequality follows by taking the integers from 1 to (n/2)1/2 
together with the even integers from (n/2)1/2 to (2n)I/2. Choi improved 
the upper bound to 1.638n l / 2. 

S. L. G. Choi, The largest subset in [1, n] whose integers have pairwise l.c.m. not 
exceeding n, Mathematika, 19(1972) 221-230; 47 #8461. 

S. L. G. Choi, On sequences containing at most three pairwise coprime integers, 
Trans. Amer. Math. Soc., 183(1973) 437-440; 48 #6052. 

P. Erdös, Extremal problems in number theory, Proc. Sympos. Pure Math. Amer. 
Math. Soc., 8(1965) 181-189; MR 30 #4740. 

B27 The number of prime factors of n + k which 
don't divide n + i, 0 < i < k. 

Erdös & Selfridge define v(n; k) as the number of prime factors of n + k 
which do not divide n + i for 0 ~ i < k, and vo(n) as the maximum of 
v(n; k) taken over all k ~ O. Does vo(n) - 00 with n? They show that 
vo(n) > 1 for all n except 1, 2, 3, 4, 7, 8 and 16. More generally, define 
vl(n) as the maximum of v(n; k) taken over k ~ l. Does vl(n) - 00 with 
n? They are unable to prove even that vI(n) = 1 has only a finite number 
of solutions. Probably the greatest n for which VI (n) = 1 is 330. 

They also denote by V(n; k) the number of primes p for which pOL is 
the highest power of p dividing n + k, but pOL does not divide n + i for 
o ~ i < k, and by Vj(n) the maximum of V(n; k) taken over k ~ l. Does 
VI (n) = 1 have only a finite number of solutions? Perhaps n = 80 is the 
largest solution. What is the largest n such that Vo(n) = 2? 

Some further problems are given in their paper. 

P. Erdös & J. 1. Selfridge, Some problems on the prime factors of consecutive 
integers, Illinois J. Math., 11(1967) 428-430. 

A. Schinzel, Unsolved problem 31, Elem. Math., 14(1959) 82-83. 
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B28 Consecutive numbers with distinct prime 
factors. 

Selfridge asked: do there exist n consecutive integers, each having either 
two distinct prime factors less than n or a repeated prime factor less than 
n? He gives two examples: 

1. the numbers a + 11 + i (1 :::; i :::; n = 115) where a == 0 mod 22 • 32 • 

52 . 72 . 112 and a + p == 0 mod p2 for each prime p, 13 :::; p :::; 113; 

2. the numbers a + 31 + i (1 :::; i :::; n = 1329) where a + p == 0 mod p2 

for each prime p, 37 :::; p :::; 1327 and a == 0 mod 22 . 32 . 52 . 72 . 112 . 
132 . 172 . 192 . 232 . 292 . 312. 

It is harder to find examples of n consecutive numbers, each one divisible 
by two distinct primes less than n or by the square of a prime< n/2, though 
he believes that they could be found by computer. 

This is related to the problem: find n consecutive integers, each having 
a composite common factor with the product of the other n - 1. If the 
composite condition is relaxed, and one asks merely for a common factor 
greater than 1, then 2184 + i (1 :::; i :::; n = 17) is a famous example. 

Alfred Brauer, On a property of k consecutive integers, Bull. Amer. Math. Soe., 
47(1941) 328-331; MR 2, 248. 

Ronald J. Evans, On blocks of N consecutive integers, Amer. Math. Monthly, 
76(1969) 48-49. 

Ronald J. Evans, On N consecutive integers in an arithmetic progression, Acta 
Sei. Math. Univ. Szeged, 33(1972) 295-296; MR 47 #8408. 

Heiko Harborth, Eine Eigenschaft aufeinanderfolgender Zahlen, Arch. Math. 
(Basel) 21(1970) 50-51; MR 41 #6771. 

Heiko Harborth, Sequenzen ganzer Zahlen, Zahlentheorie (Tagung, Math. Forseh
ungsinst. Oberwolfach, 1970) 59-66; MR 51 #12775. 

S. S. Pillai, On m consecutive integers I, Proe. Indian Aead. Sei. Seet. A, 11(1940) 
6-12; MR 1, 199; 11 11(1940) 73-80; MR 1, 291; III 13(1941) 530-533; MR 
3,66; IV Bull. Caleutta Math. Soe., 36(1944) 99-101; MR 6,170. 

B29 Is X determined by the prime divisors of 
x + 1, x + 2, ... , x + k? 

Alan R. Woods asks if there is a positive integer k such that every x is 
uniquely determined by the (sets of) prime divisors of x + 1, x + 2, ... , 
x + k. Perhaps k = 3? 

For primes less than 23 there are four ambiguous cases for k = 2: 
(x+l,x+2) = (2,3) or (8,9); (6,7) or (48,49); (14,15) or (224,225); (75,76) 
or (1215,1216). The first three of these are members of the infinite family 
(2n - 2, 2n - 1), (2n (2n - 2), (2n - 1)2). Compare B19. 
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D. H. Lehmer, On a problem of St~rmer, Illinois J. Math., 8(1964) 57-79; MR 
28 #2072. 

B30 A small set whose product is square. 

Erdös, Graham & Selfridge want us to find the least value of tn so that 
the integers n + 1, n + 2, ... , n + t n contain a subset the product of 
whose members with n is a square. The Thue-Siegel theorem implies that 
tn ---+ 00 with n, faster than apower of In n. Selfridge has shown that 
t n ~ max{P{n), 3y'n), where P{n) is the largest prime factor of n. 

Alternatively, is it true that for every c there is an no so that for every 
n > no the products TI ai, taken over n < a1 < ... < ak < n + (In n)C 
(k = 1, 2, ... ) are all distinct? They proved this for c < 2. 

Selfridge conjectures that if n is not a square, and t is the next larger 
number than n such that nt is a square, then, unless n = 8 or 392, it is 
always possible to find rand s, n < r < s < t such that nrs is a square. 
E.g., if n = 240 = 243.5 then t = 375 = 3.53 and we can find r = 243 = 35 

and s = 245 = 5 . 72 . 

P. Erdös & Jan Thrk, Products ofintegers in short intervals, Acta Arith., 44(1984) 
147-174; MR 86d:11073. 

B31 Binomial coefficients. 

Earl Ecklund, Roger Eggleton, Erdös & Selfridge (see B23) write the 
binomial coefficient (~) = n!/k!(n - k)! as a product UV in which every 
prime factor of U is at most k and every prime factor of V is greater than 
k. There are only finitely many cases with n ~ 2k for which U > V. They 
determine all such cases except when k = 3,5 or 7. 

S. P. Khare lists all cases with n ~ 551: k = 3, n = 8, 9, 10, 18, 82, 
162; k = 5, n = 10, 12, 28; and k = 7, n = 21, 30, 54. 

Most binomial coefficients (~) with n ;:::: 2k have a prime factor p ~ n/k. 
After some computing with Lacampagne & Erdös, Selfridge conjectured 
that this inequality is true whenever n > 17.125k. A slightly stronger 
conjecture is that any such binomial coefficient has least prime factor p ~ 
n/k or p ~ 17 with just 4 exceptions: (6;), (9::), (~4), e2884) for which 
p = 19, 19, 23 and 29 respectively. 

These authors define the deficiency of the binomial coefficient (nt k ), 

k ~ n, as the number of i for which bi = 1, where n + i = aibi, 1 ~ i ~ k, 
the prime factors of bi are greater than k, and n ai = k! Then 
(44) (74) (174) (239) (5179) (8413) (8414) and (~6622) each have deficiency 8 ' 10' 12 , 14' 27 ' 28 ' 28 42 
2· (46) (47) (241) (2105) (1119) d (6459) h d fi . 3 (47) h , 10' 10' 16' 25 ' 27 an 33 ave e clency ; 11 as 
deficiency 4; and e:84) has deficiency 9; and they conjecture that there 
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are no others with deficiency greater than 1. Are there only finitely many 
binomial coefficients with deficiency I? 

Erdös & Selfridge noted that if n ~ 2k ~ 4, then there is at least one 
value of i, 0 ::; i ::; k - 1, such that n - i does not divide (~), and asked 
for the least nk for which there was only one such i. For example, n2 = 4, 
n3 = 6, n4 = 9, n5 = 12. nk ::; k! far k ~ 3. 

Harry Ruderman asks for a proof or disproof that for every pair (p, q) 
of nonnegative integers there is a positive integer n such that 

is an integer. 

(2n - p)! 
n!(n + q)! 

A problem which has briefly bafHed good mathematicians is: is (~) 
ever prime to C), 0 < r < s ::; n/2? The negative answer follows from the 
identity 

Erdös & Szekeres ask if the greatest prime factor of the g.c.d. is always 
greater than r; the only counterexample with r > 3 that they noticed is 

Wolstenholme's theorem states that if n is a prime> 3, then 

( 2n -1) n == 1 mod n 3 . 

James P. Jones asks if the converse is true. For other problems and results 
on the divisors of binomial coefficients, see B33. 

D. F. Bailey, Two p3 variations of Lucas's theorem, J. Number Theory, 35(1990) 
208-215; MR 90f:ll008. 

Paul Erdös, C. B. Lacampagne & J. L. Selfridge, Estimates of the least prime 
factor of a binomial coefficient, Math. Comput., 61(1993) 215-224; MR 
93k:ll013. 

P. Erdös & J. L. Selfridge, Problem 6447, Amer. Math. Monthly, 90(1983) 710; 
92(1985) 435-436. 

P. Erdös & G. Szekeres, Some number theoretic problems on binomial coefficients, 
Austral. Math. Soc. Gaz., 5(1978) 97-99; MR 80e:1001O is uninformative. 

Richard J. McIntosh, A generalization of a congruential property of Lucas, Amer. 
Math. Monthly, 99(1992) 231-238. 

Harry D. Ruderman, Problem 714, Crux Math., 8(1982) 48; 9(1983) 58. 
David Segal, Problem E435, partial solution by H.W. Brinkman, Amer. Math. 

Monthly, 48(1941) 269-271. 
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B32 Grimm's conjecture. 

Grimm has conjectured that if n + 1, n + 2, ... , n + kare all composite, 
then there are distinct primes Pi; such that Pi, I(n + j) for 1 ~ j ~ k. For 
example 

1802 1803 1804 1805 1806 1807 1808 1809 1810 

are respectively divisible by 

53 601 41 19 43 139 113 67 181 
and 

114 115 116 117 118 119 120 121 122 123 124 125 126 
by 

19 23 29 13 59 17 2 11 61 41 31 5 7 
Ramachandra, Shorey & Tijdeman proved, under the hypothesis of 

Schinzel mentioned in A2, that there are only finitely many exceptions 
to Grimm's conjecture. 

Erdös & Selfridge asked for an estimate of f (n), the least number such 
that for each m there are distinct integers al, a2, ... , a7r(n) in the interval 
[m+ 1, m+ f(n)] with pilai where Pi is the ith prime. They and Pomerance 
show that, for large n, 

(3 - €)n ~ f(n) «: n3/2(ln n)-1/2 

P. Erdös, Problems and results in combinatorial analysis and combinatorial num
ber theory, in Proe. 9th S.E. Gonf. Gombin. Graph Theory, Gomput., Boca 
Raton, Gongressus Numerantium XXI, Utilitas Math. Winnipeg, 1978, 29-
40. 

P. Erdös & C. Pomerance, Matching the natural numbers up to n with distinct 
multiples in another interval, Nederl. Akad. Wetenseh. Proe. Sero A, 83(= 
Indag. Math., 42)(1980) 147-161; MR 81i:10053. 

Paul Erdös & Carl Pomerance, An analogue of Grimm's problem of finding dis
tinct prime factors of consecutive integers, Utilitas Math., 24(1983) 45-46; 
MR 85b:11072. 

P. Erdös & J. L. Selfridge, Some problems on the prime factors of consecutive 
integers 11, in Proe. Washington State Univ. Gonf. Number Theory, Pullman, 
1971, 13-21. 

C. A. Grimm, A conjecture on consecutive composite numbers, Amer. Math. 
Monthly, 76(1969) 1126-1128. 

Michel Langevin, Plus grand facteur premier d'entiers en progression arithmet
ique, Sem. Delange-Pisot-Poitou, 18(1976/77) Theorie des nombres: Fase. 
1, Exp. No. 3, Paris, 1977; MR 81a:10011. 

Carl Pomerance, Some number theoretic matching problems, in Proe. Number 
Theory Gonf., Queen's Univ., Kingston, 1979, 237-247. 

Carl Pomerance & J. L. Selfridge, Proof of D.J. Newman's coprime mapping 
conjecture, Mathematika, 27(1980) 69-83; MR 8li:10008. 

K. Ramachandra, T. N. Shorey & R. Tijdeman, On Grimm's problem relating 
to factorization of a block of consecutive integers, J. reine angew. Math., 
273(1975) 109-124. 
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B33 Largest divisor of a binomial coefficient. 

What can one say ab out the largest divisor, less than n, of the binomial 
coefficient (~) = n!/k!(n - k)! ? Erdös points out that it is easy to show 
that it is at least n/k and conjectures that there may be one between cn 
and n for any c < 1 and n sufficiently large. Marilyn Faulkner showed that 
if p is the least prime > 2k and n ~ p, then (~) has a prime divisor ~ p, 
except for @ and C~). Earl Ecklund showed that if n ~ 2k > 2 then (~) 
has a prime divisor p :::; n/2, except for G). 

John Selfridge conjectures that if n ~ k2 - 1, then, apart from the 
exception (~2), there is a prime divisor:::; n/ k of (~). Among those binomial 
coefficients whose least prime factor p is ~ n/k there may be only a finite 
number with p ~ 13, but there could be infinitely many with p = 7. That 
there are infinitely many with p = 5 was proved by Erdös, Lacampagne & 
Selfridge (B31). 

A classical theorem, discovered independently by Sylvester and Schur, 
stated that the product of k consecutive integers, each greater than k, has 
a prime divisor greater than k. Leo Moser conjectured that the Sylvester
Schur theorem holds for primes == 1 mod 4, in the sense that for n suffi
ciently large (and ~ 2k), (~) has a prime divisor == 1 mod 4 which is greater 
than k. However, Erdös does not think that this is true, but it may not be 
at all easy to settle. In this connexion John Leech notices that the fourteen 
integers 280213, ... , 280226 have no prime factor of the form 4m + 1 > 13. 

Thanks to Ira Gessel and John Conway, we can say that the generaliza
tion of the Catalan numbers n~l (2:), requested in the first edition by 

Neil Sloane, is (n~r) (;), which is always an integer (multiply by n and by r 
and Euclid knew that (n, r) is a linear combination of n and r). These are 
also known as generalized ballot numbers and they occur when enumerating 
certain lattice paths. 

If f (n) is the sum of the reciprocals of those primes < n which do not 
divide e:), then Erdös, Graham, Ruzsa & Straus conjectured that there 
is an absolute constant c so that f(n) < c for all n. Erdös also conjectured 
that e:) is never squarefree for n > 4. Since 41 e:) unless n = 2k , it 
suffices to consider 

Sarközy proved this for n sufficiently large and Sander has shown, in a 
precise sense, that binomial coefficients near the cent re of the Pascal tri
angle are not squarefree. Granville & Ramare completed Sarközy's proof 
by showing that k > 300000 was sufficiently large, and checking it com
putationally for 2 :::; k :::; 300000. They also improved Sander's result by 
showing that there is a constant 8, 0 < 8 < 1, such that if (~) is squarefree 
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then k or n - k must be < n° for sufficiently Iarge n. They conjecture that 
kor n - k must in fact be < (ln n)2-0, and that this is best possible in the 
sense that there are infinitely many squarefree (~) with ~n > k > c(In n)2 
for some c > 0. They prove such a result for !n > k > sin n. They show 
that there is a constant Pk > ° such that the number of n s; N with (~) 
squarefree is rv PkN. Since Pk < c/k2 for some c> 0, they conjecture that 
there is a constant , > ° such that the number of squarefree entries in the 
first N rows of Pascal's triangle is rv ,N. 

Erdös has also conjectured that for k > 8, 2k is not the sum of distinct 
powers of 3 [28 = 35 + 32 + 3 + 1J. If that's true, then for k :::: 9, 

In answer to the question, is (~i~) the Iargest (~) which is not divisible 
by the square of an odd prime, Eugene Levine gave the examples n = 784 
and 786. Erdös feeis sure that there are no Iarger such n. 

Denote by e = e(n) the largest exponent such that, for some prime p, 
pe divides e:). It is not known whether e -+ 00 with n. On the other 
hand Erdös cannot disprove e > eIn n. 

Ron Graham offers $100.00 for deciding if (e:), 105) = 1 infinitely 
often. Kummer knew that n, when written in base 3 or 5 or 7, would have 
to have only the digits 0, 1 or 0, 1, 2 or 0, 1, 2, 3 respectively. H. Gupta 
& S. P. Khare found the 14 values 1, 10, 756, 757, 3160, 3186, 3187, 3250, 
7560, 7561, 7651, 20007, 59548377, 59548401 of n less than 710 , while Peter 
Montgomery, Khare and others found many larger values. 

Erdös, Graham, Ruzsa & Straus showed that for any two primes p, q 
there are infinitely many n for which (e:),pq) = 1. If g(n) is the smallest 
odd prime factor of (~), then g(3160) = 13 and g(n) s; 11 for 
3160 < n < 1010000 . 
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stracts Amer. Math. Soc., 14(1993) 419.) 
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Monthly, 68(1961) 896-897. 

B34 If there's an i such that n - i divides (~). 

If Hk,n is the proposition: there is an i, 0 ::; i < k such that n - i divides 
(~), then Erdös asked if Hk,n is true for all k when n ;::: 2k. Schinzel gave 
the counterexample n = 99215, k = 15. If Hk is the proposition: Hk,n is 
true for all n, then Schinzel showed that Hk is false for k = 15, 21, 22, 33, 
35 and thirteen other values of k. He showed that Hk is true for all other 
k ::; 32 and asked if there' are infinitely many k, other than prime-powers, 
for which Hk is true: he conjectures not and later reported that it is true 
for k = 34, but for no other non-prime-powers between 34 and 201. 

E. Burbacka & J. Piekarczyk, P. 217, R. 1, Colloq. Math., 10(1963) 365. 
A. Schinzel, Sur un probleme de P. Erdös, Colloq. Math., 5(1957-58) 198-204. 

B35 Products of consecutive numbers with the 
same prime factors. 

Let f(n) be the least integer such that at least one of the numbers n, 
n + 1, ... , n + f (n) divides the product of the others. It is easy to see that 



90 B. Divisibility 

f(k!) = k and f(n) > k for n > k! Erdös has also shown that 

f(n) > exp((lnn)1/2-€) 

for an infinity of values of n, but it seems difficult to find a good upper 
bound far f(n). 

Erdös asks if (m + l)(m + 2)··· (m + k) and (n + l)(n + 2)·.· (n + l) 
with k ~ l ~ 3 can contain the same prime factors infinitely often. Far 
example (2 . 3 . 4 . 5 . 6) . 7 . 8 . 9 . 10 and 14· 15 . 16 and 48 ·49·50; also 
(2 . 3 . 4 . 5 . 6) . 7 . 8 . 9 . 10 . 11 . 12 and 98 . 99 . 100. For k = l ~ 3 he 
conjectures that this happens only finitely many times. 

If L(n;k) is the l.c.m. ofn+ 1, n+2, ... , n+k, then Erdös conjectures 
that for l > 1, n ~ m + k, L(m; k) = L(n; l) has only a finite number 
of solutions. Examples are L( 4; 3) = L(13; 2) and L(3; 4) = L(19; 2). He 
asks if there are infinitely many n such that for all k (1 :S k < n) we 
have L(n; k) > L(n - k; k). What is the largest k = k(n) for which this 
inequality can be reversed? He notes that it is easy to see that k(n) = o(n), 
but he believes that much more is true. He expects that for every f > 0 
and n > nO(f), k(n) < n1/ 2+€ but cannot prove this. 

P. Erdös, How many pairs of products of consecutive integers have the same 
prime factors? Amer. Math. Monthly, 87(1980) 391-392. 

B36 Euler's totient function. 

Euler's totient function, <jJ( n), is the number of numbers not greater than 
n and prime to n. For example <jJ(1) = <jJ(2) = 1, <jJ(3) = <jJ(4) = <jJ(6) = 2, 
<jJ(5) = <jJ(8) = <jJ(10) = <jJ(12) = 4, <jJ(7) = <jJ(9) = 6. Are there infinitely 
many pairs of consecutive numbers, n, n + 1, such that <jJ(n) = <jJ(n + I)? 
For example, n = 1, 3, 15, 104, 164, 194, 255, 495, 584, 975. It is not even 
known if 1<jJ(n + 1) - <jJ(n) I < n€ has an infinity of solutions for each f > o. 
Baillie extended the work of others to find 306 solutions of <jJ(n) = <jJ(n+ 1) 
below 108 and 85 between 108 and 2 . 108 . 

Schinzel conjectures that for every even k the equation <jJ( n + k) = <jJ( n) 
has an infinity of solutions. He observes that the corresponding conjecture 
with k odd is implausible. For k = 1, the problem is that of the previous 
paragraph. For k = 3 he found only the solutions n = 3 and n = 5 in 
the range n < 104 , and D.H. Lehmer extended this to 106 . Sierpinski has 
shown that <jJ( n + k) = <jJ( n) has at least one solution for each value of k 
and Schinzel & Wakulicz have shown that there are at least two solutions 
for each k < 2 . 1058 . Ml}kowski has shown that <jJ( n + k) = 2<jJ( n) has at 
least one solution for every k. For the equation <jJ(n + k) = 3<jJ(n) see the 
solution to problem E 3215 in Amer. Math. Monthly, 96(1989) 63-64. 
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Ml.}kowski (see reference at B5) also discusses the equation </1(x + k) = 
</1(x) + </1(k). J. Browkin showed that if k = 3, then there was no solution 
with x < 37182142. 

Three curiosities are </1(5186) = </1(5187) = </1(5188) = 2534 , </1(25930) = 
</1(25935) = </1(25940) = </1(25942) = 2734 and </1(404471) = </1(404473) = 
</1(404477) = 2832527. 

Nontotients are positive even values of n for which </1(x) = n has no 
solution; for example, n = 14, 26, 34, 38, 50, 62, 68, 74, 76, 86, 90, 94, 
98. The number, #(y), of these less than y has been calculated by the 
Lehmers. 

y 103 104 2· 104 3· 104 4· 104 5· 104 6· 104 7· 104 8· 104 9· 104 

#(y) 210 2627 5515 8458 11438 14439 17486 20536 23606 26663 

Erdös & Hall have shown that the number, ~(y) = y - #(n), of n 
for which </1(x) = n has a solution is ye!(Y)/lny, where f(y) lies between 
c(Inlnlny)2 and c(lny)1/2. Maier & Pomerance more recently showed that 
the lower bound was correct, with c ~ 0.8178. Erdös conjectures that 
~(cy)/~(y) -+ c, and that this, if true, may be the best substitute that one 
can find for an asymptotic formula for ~(y). 

Noncototients are positive values of n for which x - </1(x) = n has no 
solution; for example, n = 10, 26, 34, 50, 52, 58, 86, 100. Sierpinski and 
Erdös conjecture that there are infinitely many noncototients. 

Erdös once asked if it was true that for every € there is an n with 
</1(n) = m, m < m and for no t < n is </1(t) = m; perhaps there are many 
such n. 

Michael Ecker has asked for which values of x do each of the series 
E:'=l </1(n)/nx and E:'=l (_l)n+l</1(n)/nx converge. 
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425-426; MR 23 #A831. 

W. Sierpinski, Sur un propriete de la fonction ifJ(n), Publ. Math. Debrecen,4(1956) 
184-185. 

Charles R. Wall, Density bounds for Euler's function, Math. Comput., 26 (1972) 
779-783 with microfiche supplement; MR 48 #6043. 

Masataka Yorinaga, Numerical investigation of some equations involving 
Euler's cf>-function, Math. J. Okayama Univ., 20(1978) 51-58. 

B37 Does cjJ( n) properly divide n - I? 

D. H. Lehmer has conjectured that there is no composite value of n such 
that <jJ(n) is a divisor of n - 1, i.e., that for no value of n is <jJ(n) a proper 
divisor ofn-l. Such an n must be a Carmichael number (A13). He showed 
that it would have to be the product of at least seven distinct primes, and 
Lieuwens has shown that if 31n, then n > 5.5.10571 and w(n) 2 212; if 
the smallest prime factor of n is 5, then w(n) 2 11; if the smallest prime 
factor of n is at least 7, then w(n) 2 13. This supersedes and corrects 
the work of Schuh. Masao Kishore has shown that at least 13 primes are 
needed in any case, and Cohen & Hagis have improved this to 14. Siva 
Rama Prasad & Subbarao improve Lieuwens's 212 result to w(n) 2 1850 
and Hagis to w(n) 2298848. Siva Rama Prasad & Rangamma show that 
if 31n, n composite, M<jJ(n) = n - 1, M "14, then w(n) 25334. 

Pomerance has proved that the number of composite n less than x for 
which <jJ(n) In -1 is 

and Shan Zun improved the exponent ~ to !. 
Schinzel notes that if n = p or 2p, where p is prime, then <jJ( n) + 1 

divides n and asks if the converse is always true. Segal (see paper with 
Cohen) observes that Schinzel's quest ion reduces to that of Lehmer, that it 
arises in group theory, and may have been raised by G. Haj6s (see Miech's 
paper, though there it is attributed to Gordon). 

If n is prime, it divides <jJ(n)d(n) + 2. Is this true for any compos
ite nother than n = 4? Subbarao also notes that if n is prime, then 
nl1(n) == 2 mod <jJ(n), and also if n = 4, 6 or 22; is it true for infinitely 
many composite n? 

Subbarao has an analogous conjecture to Lehmer's, based on the func
tion <jJ* (n) = TI (pa -1), where the product is taken over the maximal prime 
power divisors of n, pa IIn. He conjectures that <jJ* (n) I (n -1) if and only if n 
is apower of a prime. He also has a 'dual' of Lehmer's conjecture, namely 
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that 'ljJ(n) == 1 mod n only when n is a prime, where 'ljJ(n) is Dedekind's 
function (see B41). 

Ron Graham makes the following conjecture 

i., For all k there are infinitely many n such that 4J( n) I (n - k) ? 

He observes that it is true for k = 0, k = 2U (a ~ 0) and k = 2u 3b (a, b> 0) 
for example. Pomerance (see Acta Arith. paper quoted in B2) has treated 
Graham's problem. Victor Meally notes that 4J(n) sometimes divides n+ 1, 
e.g., for n = n1 = 3·5·17·353·929 and n = n1 ·83623937. [Note that 
353 = 11 . 25 + 1, 929 = 29· 25 + 1, 83623937 = 11 .29.218 + 1 and 
(353 - 28 )(929 - 28 ) = 216 - 28 + 1.] 
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B38 Solutions of cjJ(m) = O"(n). 

Are there infinitely many pairs of numbers m, n such that 4>(m) = O'(n)? 
Since for P prime 4>(P) = P - 1 and O'(p) = P + 1 this quest ion would 
be answered affirmatively if there were infinitely many twin primes (A7). 
Also if there were infinitely many Mersenne primes (A3) Mp = 2P -1, since 
O'(Mp ) = 2P = 4>(2P+1). However there are many solutions other than these, 
sometimes displaying little noticeable pattern, e.g., 4>(780) = 192 = 0'(105). 

Erdös remarks that the equation 4>(x) = n! is solvable, and (apart from 
n = 2) O'(y) = n! is probably solvable also. Charles R. Wall can show that 
'IjJ(n) = n! is solvable for n '# 2, where 'IjJ is Dedekind's function (see B41). 

Le Mao-Hua, A note on primes P with u(pm) = zn, Colloq. Math., 62(1991) 
193-196. 

B39 Carmichael's conjecture. 

Carmichael's conjecture. For every n it appears to be possible to find 
an m, not equal to n, such that 4>(m) = 4>(n) and for a few years early in 
this century it was thought that Carmichael had proved this. Klee verified 
the conjecture for 4>( n) < 10400 , and for all n not divisible by 242 . 347. 
Masai & Valette have raised the bound to 1010000, and Schlafly & Wagon 
to 101360000 and are proceeding to 1010000000. Pomerance has shown that 
if n is such that for every prime P for which P - 1 divides 4>( n) we have 
p2 divides n, then n is a counterexample. He can also show (unpublished) 
that if the first k primes p == 1 (mod q) (where q is prime) are all less 
than qk+1, then there are no numbers n which satisfy his theorem. This 
also implies the truth of his conjecture that Pk - 11 I1i<k Pi (pi - 1). The 
truth of this last conjecture for all k also implies that there are no numbers 
n which satisfy his theorem. 

Define the multiplicity of an integer as the number of times it occurs 
as a value of 4>(n). For example, 6 has multiplicity 4 because 4>(n) = 6 
for n = 7, 9, 14, 18 and no other values of n. The multiplicity may be 
zero (for any odd n > 1, and n = 14, 26, 34, ... ), but not, according to 
the Carmichael conjecture, equal to one. Sierpinski conjectured that all 
integers greater than 1 occur as multiplicities and Erdös has shown that if 
a multiplicity occurs once it occurs infinitely often. Schlafly & Wagon have 
found examples of all multiplicities from 2 through 65. 

There are examples of even numbers n such that there is no odd number 
m such that 4>(m) = 4>(n). Lorraine Foster has given n = 33817088 = 
29 .2572 as the least such. 

Erdös proved that if 4>( x) = k has exactly s solutions, then there are 
infinitely many other k for which there are exactly s solutions, and that 
s > kC for infinitely many k. If C is the least upper bound of those c for 
which this is true, then Wooldridge showed that C 2:: 3 - 2V2 > 0.17157. 
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Pomerance used Hooley's improvement on the Brun-Titchmarsh theorem 
to improve this to C 2: 1 - 625/512e > 0.55092 and notes that further 
improvements by Iwaniec enable hirn to get C > 0.55655 so that s > k5/ 9 

for infinitely many k. Erdös conjectures that C = 1. In the other direction 
Pomerance also shows that 

s < kexp{ -(1 + 0(1)) In k lnlnln k / lnln k} 

and gives a heuristic argument to support the belief that this is best pos
sible. 
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Math. Soc., 76(1979) 229-234; MR 80g:10008. 
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B40 Gaps between totatives. 
If al < a2 < ... < aq,(n) are the integers less than n and prime to it, then 
Erdös conjectured that L:(aHl - ai)2 < cn,2 fcP(n) and offered $500.00 for a 
proof. Hooley showed that, for 1 :::; a < 2, L:(aHl - ai)a «n(nfcP(n))a-l 
and that L:(aHl - ai)2 «n(lnlnn)2, Vaughan established the conjecture 
"on the average" and he & Montgomery finally won the prize. 

Jacobsthal asked what bounds can be placed on J(n) = max(aHl -ai). 
Erdös asks if, for infinitely many x, there are two integers nb n2, 
nl < n2 < x, nl ..1 n2, J(nl) > lnx, J(n2) > lnx. 

P. Erdös, On the integers relatively prime to n and on a number-theoretic function 
considered by Jacobsthal, Math. Scand., 10(1962) 163-170; MR 26 #3651. 

C. Hooley, On the difference of consecutive numbers prime to n, Acta Arith., 
8(1962/63) 343-347; MR 27 #5741. 

H. L. Montgomery & R. C. Vaughan, On the distribution of reduced residues, 
Ann. 01 Math. (2), 123(1986) 311-333; MR 87g:11119. 

R. C. Vaughan, Some applications of Montgomery's sieve, J. Number Theory, 
5(1973) 64-79. 

B41 Iterations of cP and a. 
There is a elose relative to the sum of divisors and the sum of the unitary 
divisors function, which complements Euler's totient function and which 
is often named for Dedekind. If n = p~l p~2 ... p~k, denote by 'ljJ( n) the 
product TIp~,-l(Pi + 1), Le., 'ljJ(n) = n TI(l + p-l), where the product 
is taken over the distinct prime divisors of n. It is easy to see that iter
ation of the function leads eventually to terms of the form 2a 3b where b 
is fixed and a increases by one in successive terms. Given any value of b 
there are infinitely many values of n which lead to such terms, for exam
pIe, 'ljJk(2a3b7c ) = 2a+4k3b7c- k (0 :::; k :::; c) and 'ljJk(2a3b7c ) = 2a+5k-c3b 

(k > c). 
David E. Penney & Pomerance, in an unpublished paper, show that 

there are values of n for which the iterates of the function 'ljJ(n) - n are 
unbounded as the number of iterations tends to infinity; the least such is 
n = 318. 

If we average 'ljJ with the cj>-function, ~(cf> + 'ljJ), and iterate, we produce 
sequences whose terms become constant whenever they are prime powers; 
for example 24, ~(8+48) = 28, ~(12+48) = 30, ~(8+72) = 40, ~(16+72) = 
44, ~(20+72) = 46, ~(22+72) = 47, ~(46+48) = 47, .... Charles R. Wall 
gives examples where iteration leads to an unbounded sequence: start with 
45, 48, '" or 50, 55, ... and continue 56, 60, 80, 88, 92, 94, 95, 96, ... ; 
each term after the 35th is the double of the last but seven! 

We can also average the (J'- and 4>-functions, and iterate. Since cf>(n) is 
always even for n > 2 and (J'(n) is odd when n is a square or twice a square, 
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we will sometimes get a noninteger value. For example, 54, 69, 70, 84, 124, 
142, 143 ,144, 225~; in this case we say that the sequence fractures. It is 
easy to show that (O'( n) + cf; ( n)) /2 = n just if n = 1 or a prime, so sequences 
can become constant, for example, 60, 92, 106, 107, 107, .... Are there 
sequences which increase indefinitely without fracturing? 

Of course, if we iterate the cP-function, it eventually arrives at 1. Call 
the least integer k for which cf;k (n) = 1 the class of n. 

k n 
1 2 
2 3 4 6 
3 5 7 8 9 10 12 14 18 
4 11 13 15 16 19 20 21 22 24 26 
5 1723 25 29 31 32 33 34 35 37 39 40 43 ... 
6 41 47 51 53 55 59 61 64 65 67 68 69 71 73 
7 83 85 89 97 101 103 107 113 115 119 121 122123 125 128 ... 

The set of least values of the dasses is M = {2, 3, 5, 11, 17,41,83, ... }. 
Shapiro conjectured that M contained only prime values, but Mills found 
several composite members. If S is the union, for all k, of the members of 
dass k which are < 2k , then 

S= {3;5, 7;11,13,15;17,23,25,29,31;41,47,51,53,55,59,61;83,85, ... } 

and Shapiro showed that the factors of an element of S is also in S. Catlin 
showed that if m is an odd element of M, then the factors of M are in M, 
and that there are finitely many primes in M just if there are finitely many 
odd numbers in M. Does S contain infinitely many odd numbers? Does 
M contain infinitely many odd numbers? 

Pillai showed that the dass, k = k(n), of n satisfies 

l~:;J S k(n) S l~:;J 
and it's easy to see (look at 2a3b) that k(n)/ In n is dense in the interval 
[1/ln3, 1/ln2]. What is the average and normal behavior of k(n)? Erdös, 
Granville, Pomerance & Spiro conjecture that there is a constant Cl such 
that the normal order of k(n) is Cl In n and prove this under the assumption 
of the Elliott-Halberstam conjecture. They also showed that the normal 
order of cf;h (n) /cPh+l (n) is he/ln In In n for each positive integer h, where 
'"Y is Euler's constant. See their paper for many unsolved problems: for 
example, if O'k (n) is the kth iterate of the sum of divisors function, they 
are unable to prove or disprove any of the following statements. 

? 
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" for every n > 1, erk+l(n)/erk(n) ~ 00 as k ~ 00 ? 

" 
k l/k for every n > 1, (er (n)) ~ 00 as k ~ 00 ? 

" for every n > 1, there is some k with nlerk(n) ? 

" for every n, m> 1, there is some k with mlerk(n) ? 

" for every n, m> 1, there are some k, l with erk(m) = erl(n) ? 

Miriam Hausman has characterized those integers n which are solutions 
of the equation n = mfjJk(n); they are mainly of the form 2a3b . 

Finucane iterated the function fjJ( n) + 1 and asked: in how many steps 
does one reach a prime? Also, given a prime p, what is the distribution 
of the values of n whose sequences end in p? Are 5, 8, 10, 12 the only 
numbers which lead to 5? And 7, 9, 14, 15, 16, 18, 20, 24, 30 the only ones 
leading to 7? 

Erdös similarly asked about the iteration of er(n) - 1. Does it always 
end on a prime, or can it grow indefinitely? In none of the cases of iteration 
of er(n) -1, of (~(n) +fjJ(n))/2, or of (fjJ(n) +er(n))/2 is he able to show that 
the growth is slower than exponential. For several results and conjectures, 
consult the quadrupIe paper cited below. 

Atanassov defines some additive analogs of fjJ and er, poses 17 questions 
and answers only three of them. 

Krassimir T. Atanassov, New integer functions, related to if> and (J' functions, 
Bult. Number Theory Related Topics, 11(1987) 3-26; MR 90j:ll007. 

P. A. Catlin, Concerning the iterated 4>-function, Amer. Math. Monthly, 77(1970) 
60-6l. 

P. Erdös, A. Granville, C. Pomerance & C. Spiro, On the normal behavior of 
the iterates of some arithmetic functions, in Berndt, Diamond, Halberstarn 
& Hildebrand (editors), Analytic Number Theory, Proc. Con/. in honor 
P. T. Bateman, Allerton Park, 1989, Birkhäuser, Boston, 1990, 165-204; 
MR 92a:11113. 

P. Erdös, Some remarks on the iterates of the if> and (J' functions, Colloq. Math., 
17(1967) 195-202; MR 36 #2573. 

Paul Erdös & R. R. Hall, Euler's 4>-function and its iterates, Mathematika, 
24(1977) 173-177; MR 57 #12356. 

Miriam Hausman, The solution of a special arithmetic equation, Canad. Math. 
Bull., 25(1982) 114-117. 

W. H. Mills, Iteration ofthe 4>-function, Amer. Math. Monthly, 50(1943) 547-549; 
MR 5, 90. 

C. A. Nicol, Some diophantine equations involving arithmetic functions, J. Math. 
Anal. Appl., 15(1966) 154-16l. 

Ivan Niven, The iteration of certain arithmetic functions, Canad. J. Math., 
2(1950) 406-408; MR 12, 318. 

S. S. Pillai, On a function connected with if>(n), Bull. Amer. Math. Soc., 35(1929) 
837-841. 
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Carl Pomerance, On the composition of the arithmetic functions a and (jJ, Colloq. 
Math., 58(1989) 11-15; MR 91c:11003. 

Harold N. Shapiro, An arithmetic function arising from the r/>-function, Amer. 
Math. Monthly, 50(1943) 18-30; MR 4, 188. 

Charles R. Wall, Unbounded sequences of Euler-Dedekind means, Amer. Math. 
Monthly, 92(1985) 587. 

B42 Behavior of 1;( a( n)) and a( 1;( n)). 
Erdös asks us to prove that <fJ( n) > <fJ( n - <fJ( n)) for almost all n, but that 
<fJ(n) < <fJ(n - <fJ(n)) for infinitely many n. 

Mf}kowski & Schinzel prove that limsup<fJ(a(n))/n = 00, 

limsup<fJ2(n)/n =~, and liminf a(<fJ(n))/n ::; ~ + 2341_ 4 

and they ask if a(<fJ(n))/n > ~ for all n. They point out that even 
inf a(<fJ(n))/n > 0 is not proved, but Pomerance has since established this, 
using Brun's method. 

John Selfridge, Fred Hoffman & Rich Schroeppel found 24 solutions of 
<fJ(a(n)) = n, namely 

2k for k = 0, 1, 3, 7, 15 & 31; 22.3; 28 .33; 210 .33 .112; 212 .33 .5.7 ·13; 
24 .3.5; 24 .32 .5; 29 .3.52 .31; 29 .32 .52 .31; 25 .34 .5.11; 25 .34 .52 .11; 
28 .34 ·5· 11; 28 .34 .52 . 11; 25 .36 .72 . 13; 26 .36 • 72 . 13; 213 .37 .5.72; 
213.37.52.72; 221 .33 .5.113 .31; 221.33.52.113.31; and there are, of 
course, 24 corresponding solutions of a(<fJ(m)) = m. Are there others? An 
infinite number? 

Golomb observes that if q > 3 and p = 2q - 1 are primes and m E 
{2, 3, 8, 9, 15}, then n = pm is a solution of <fJ(a(n)) = <fJ(n). Undoubtedly 
there are infinitely many such and undoubtedly no one will prove this in 
the foreseeable future. There are other solutions, 1, 3, 15, 45, ... ; an 
infinite number? He gives the solutions 1, 87, 362, 1257, 1798, 5002, 9374 
to a(<fJ(n)) = a(n). He also notes that if p and (3P -1)/2 are primes (e.g., 
p = 3, 7, 13, 71, 103), then n = 3P- 1 is a solution of a(<fJ(n)) = <fJ(a(n)); 
and shows that a( <fJ( n)) - <fJ( a( n)) is both positive and negative infinitely 
often and asks what is the proportion of each? 

P. Erdös, Problem P. 294, Canad. Math. Bull., 23(1980) 505. 
Solomon W. Golomb, Equality among number-theoretic functions, preprint, Oct 

1992; Abstract 882-11-16, Abstracts Amer. Math. Soc., 14(1993) 415-416. 
A. Ml}kowski & A. Schinzel, On the functions (jJ(n) and a(n), Colloq. Math., 

13(1964--65) 95-99; MR 30 #3870. 
Carl Pomerance, On the composition of the arithmetic functions a and (jJ, Colloq. 

Math., 58(1989) 11-15; MR 91c:11003. 
J6zsef Sandor, On the composition of some arithmetic functions, Studia Univ. 

Babe§-Bolyai Math., 34(1989) 7-14; MR 9li:11008. 
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B43 Alternating sums of factorials. 

The numbers 

3! - 2! + I! = 5, 
4! - 3! + 2! - I! = 19, 
5! - 4! + 3! - 2! + I! = 101, 
6! - 5! + 4! - 3! + 2! - I! = 619, 
7! - 6! + 5! - 4! + 3! - 2! + I! = 4421, 

and 8! - 7! + 6! - 5! + 4! - 3! + 2! - I! = 35899 

are each prime. Are there infinitely many such? Here are the factors of 
An = n! - (n -I)! + (n - 2)! - + ... - (-I)nl! for the next few values of n: 

n An 
9 79·4139 
10 3301819 (prime) 
11 13· 2816537 
12 29·15254711 
13 47·1427·86249 
14 211· 1679 . 229751 
15 1226280710981 (prime) 
16 53·6581·56470483 
1747·7148742955723 
18 2683·2261044646593 

n An 
19 15578717622022981 (prime) 
20 8969·210101· 1229743351 
21 113· 167·4511191 ·572926421 
22 79·239·56947572104043899 
23 85439·289993909455734779 
24 12203·24281·2010359484638233 
25 59·555307·455254005662640637 
26 1657·234384986539153832538067 
27 1272 .271.1163.2065633479970130593 
28 61 ·221171 ·21820357757749410439949 

The example n = 27 shows that these numbers are not necessarily square
free. Wilfrid Keller has continued the calculations for n :s 335; An is prime 
for n = 41, 59, 61, 105 and 160. 

If there is a value of n such that n + 1 divides An, then n + 1 will divide 
Am for all m > n, and there would be only a finite number of prime values. 
Wagstaff established that if there is such an n, it is larger than 46340. 

B44 Sums of factorials. 

D. Kurepa defines !n = O! + I! + 2! + ... + (n -I)! and asks if!n ~ 0 mod n 
for all n > 2. Slavic used a computer to establish this for 3 :s n :s 1000. 
The conjecture is that (!n, n!) = 2. Wagstaff has extended the calculations 
and verified the conjecture for n < 50000, and Mijajlovic for n :s 106 . He 
notes that for Kn = !(n + 1) -1 = I! + 2! + ... + n! we have 31Kn for n ~ 2, 
91Kn for n ~ 5 and 991Kn for n ~ 10. Wilfrid Keller has since extended 
this and found no new divisibilities for K n with n < 106 . In a 91-03-21 
letter, Reg. Bond offers an as yet unpublished proof of the conjecture. 

It is also conjectured that, except that 22 divides !3, !n is squarefree. 
Mijajlovic has confirmed that m2 f!n for m :s 1223. 
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L. Carlitz, A note on the left factorial function, Math. Balkanika, 5(1975) 37-42. 
Duro Kurepa, On some new left factorial propositions, Math. Balkanika, 4(1974) 

383-386; MR 58 #10716. 
Z. Mijajlovic, On some formulas involving !n and the verification of the !n

hypothesis by use of computers, Publ. Inst. Math. (Beogmd) (N.S.) 47(61) 
(1990) 24-32; MR 92d:11134. 

B45 Euler numbers. 

The coefficients in the expansion of sec x = I: En(ix)n/n! are the Euler 
numbers, and arise in several combinatorial contexts. Eo = 1, E2 = -1, 
E4 = 5, E6 = -61, Es = 1385, ElO = -50521, E 12 = 2702765, E 14 = 
-199360981, E 16 = 19391512145, E 1S = -2404879675441, ... . 1s it 
true that for any prime p == 1 mod 8, E(p-l)!2 t= 0 mod p? 1s it true for 
p == 5 mod 8? 

E. Lehmer, On congruences involving Bernoulli numbers and the quotients of 
Fermat and Wilson, Annals of Math. 39(1938) 350-360; Zbl. 19, 5. 

Barry J. Powell, Advanced problem 6325, Amer. Math. Monthly, 87(1980) 826. 

B46 The largest prime fact or of n. 

Erdös denotes by P(n) the largest prime factor of n and asks if there are 
infinitely many primes p such that (p - 1)/ P(p - 1) = 2k ? Or = 2k ·31? 

If n > 2, then P(n), P(n + 1), P(n + 2) are all distinct. Show that each 
of the six permutations of {low, medium, high} occurs infinitely often, and 
that they occur with equal frequency. 2k - 2, 2k -1, 2k show that medium, 
high, low occurs for infinitely many k because P(2k - 1) -+ 00 as k -+ 00 

by a theorem of Bang (or Mahler). To see that low, medium high occurs 
infinitely often, ask if p - 1, p, p + 1 works for p prime. No! Try p2 - 1, 
p2, p2 + 1. Maybe. If p(p2 + 1) < p, try p4 -1, p4, p4 + 1. Eventually, for 
each prime p, there will be a value of k such that p(p2k + 1) > p. 

Selfridge settled the low, high, medium case with 2k , 2k + 1, 2k + 2 and 
Tijdeman gave the following argument for medium, low, high: consider the 
possibilities 2k - 1, 2k , 2k + 1; 22k - 1, 22k , 22k + 1; 24k - 1, 24k , 24k + 1; 

P. Erdös & Carl Pomerance, On the largest prime factors of n and n + 1, Aequa
tiones Math., 17(1978) 311-321; MR 58 #476. 
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Selfridge notices that 22 - 2 divides n2 - n for all n, that 222 - 22 divides 
2 22 2 22 2 

n2 - n 2 and 22 - 22 divides n2 - n2 and asks for what a and b does 
2a - 2b divide na - nb for all n. The case n = 3 was proposed as E2468*, 
Amer. Math. Monthly, 81(1974) 405 by Harry Ruderman. In his solution 
(83(1976) 288-289) Bill Velez omits (b, a - b) = (0,1) as trivial and gives 
13 other solutions, (1,1), (1,2), (2,2), (3,2), (1,4), (2,4), (3,4), (4,4), (2,6), 
(3,6), (2,12), (3,12), (4,12). Remarks by Pomerance (84(1977) 59-60) show 
that results of Schinzel complete Velez's solution. The problem was also 
solved by Sun Qi & Zhang Ming Zhi. 

A. Schinzel, On primitive prime factors of an - bn, Proc. Cambridge Philos. Soc., 
58(1962) 555-562. 

Sun Qi & Zhang Ming-Zhi, Pairs where 2a - 2b divides na - nb for all n, Proc. 
Amer. Math. Soc., 93(1985) 218-220; MR 86c:1l004. 

B48 Products taken over primes. 

David Silverman noticed that if Pn is the n-th prime, then 

rrm Pn + 1 

P -1 
n=l n 

is an integer for m = 1, 2, 3, 4 and 8 and asked is it ever again an in
teger? Equivalently, as Ml}kowski observes (reference at B16), for what 
n = I1~=1 Pr does q;(n) divide a(n)? For example, if a(n) = 4q;(n) then 2n 
is either perfect or abundant, a(2n) ~ 4n. 

Wagstaff asked for an elementary proof (e.g., without using properties 
of the Riemann (-function) that 

where the product is taken over all primes. It seems very unlikely that 
there is a proof which doesn't involve analytical methods. At first glance it 
might appear that the fractions might cancel, but none of the numerators 
are divisible by 3. Euler's proof is 

p2+1 p4_1 1_p-4 (2(2) (11"2/6? 5 rr p2 -1 = rr (r -1)2 = rr (1- p-2)2 = «(4) = 11"4/90 ="2. 

This uses L: n-k = I1(1- p-k)-l and L: n-2 = 11"2/6 and L:n-4 = 11"4/90. 
Wagstaff regards the first as elementary, but not the latter two. He would 
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like to see a direct proof of 2(2: n-2 )2 = 52: n-4 or of 

00 1 00 1 1 
4"'- '" --3"'L.J n2 L.J m 2 - L.J n4 

n=l m=n+1 

B49 Smith numbers. 
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Albert Wilansky named Smith numbers from his brother-in-Iaw's tele
phone number 

4937775 = 3·5·5·65837, 

the sum of whose digits is equal to the sum of the digits of its prime 
factors, and they so on caught the public fancy. Trivially, any prime is a 
Smith number: so are 4, 22, 27, 58, 85, 94, 121, .... Oltikar & Wayland 
gave the examples 3304(10317 -1)/9 and 2.1045(10317 -1)/9 and the race 
to find larger and larger Smith numbers was on. Yates has given 

with 10694985 decimal digits, but has since beaten his own record with a 
13614513-digit Smith number. 

Stephen K. Doig, Math Whiz makes digital discovery, The Miami Herold, 1986-
08-22; GoU. Math. J., 18(1987) 80. 

Editorial, Smith numbers ring a bell? Fort Lauderdale Sun Sentinel, 86-09-16, 
p.8A. 

Editorial, Start with 4,937,775, New York Times, 86-09-02. 
Wayne L. McDaniel, The existence of infinitely many k-Smith numbers, Fibonacci 

Quart., 25(1987) 76-80. 
Wayne L. McDaniel, Powerful k-Smith numbers, Fibonacci Quart., 25(1987) 225-

228. 
Wayne L. McDaniel, Palindromic Smith numbers, J. Recreational Math., 19(1987) 

34-37. 
Wayne L. McDaniel, Difference of the digital sums of an integer base band its 

prime factors, J. Number Theory, 31(1989) 91-98; MR 90e:ll021. 
Wayne L. McDaniel & Samuel Yates, The sum of digits function and its applica

tion to a generalization of the Smith number problem, Nieuw Arch. Wisk.(4), 
7(1989) 39-51. 

Sham Oltikar & Keith Wayland, Construction of Smith numbers, Math. Mag., 
56(1983) 36-37. 

Ivars Peterson, In search of special Smiths, Science News, 86-08-16, p. 105. 
A. Wilansky, Smith numbers, Two- Year GoU. Math. J., 13(1982) 21. 
Samuel Yates, Special sets of Smith numbers, Math. Mag., 59(1986) 293-296. 
Samuel Yates, Smith numbers congruent to 4 (mod 9), J. Recreational Math., 

19(1987) 139-141. 
Samuel Yates, How odd the Smith are, J. Recreational Math., 19(1987) 168-174. 
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Samuel Yates, Digital sum sets, in R. A. Mollin (ed.), Number Theory, Proc. 1st 
Ganad. Number Theory Assoc. Gonj., BanfJ, 1988, de Gruyter, New York, 
1990, pp. 627-634; MR 92c:ll008. 

Samuel Yates, Tracking titanics, in R. K. Guy & R. E. Woodrow (eds.) , The 
Lighter Side ofMathematics, Proc. Strens Mem. Gonj., Galgary, 1986, Spec
trum Series, Math. Assoc. of America, Washington DC, 1994. 



c. Additive Number Theory 

Cl Goldbach's conjecture. 

One of the most infamous problems is Goldbach's conjecture that every 
even number greater than 4 is expressible as the sum of two odd primes. 
Javier Echevarria has verified it up to 232 , and Matti Sinisalo to 4 x 1011 . 

Vinogradov proved that every odd number greater than 3315 is the sum 
of three primes and Chen Jing-Run has shown that alllarge enough even 
numbers are the sum of a prime and the product of at most two primes. 

315 11.503 
Chen & Wang have reduced the number 3 to ee . 

"Conjecture A" ofHardy & Littlewood (cf. Al, A8) is that the number, 
N2 (n), of representations of an even number n as the sum of two primes, 
is given asymptotically by 

2cn rr (P-1) 
N2(n) f'V (In n)2 p _ 2 ' 

where, as in A8, 2c ~ 1.3203 and the product is taken over all odd prime 
divisors of n. 

Stein & Stein have calculated N2 (n) for n < 105 and have found values 
of n for which N 2(n) = k for all k < 1911. It is conjectured that N 2 (n) takes 
all positive integer values. They also verified the conjecture for n < 108 . 

Granville, van de Lune & te Riele have extended this to 2 . 1010 . 

Let <jJ(n) be Euler's totient function (B36) so that if pis prime, <jJ(P) = 
p - 1. If the Goldbach conjecture is true, then there are, for each number 
m, prime numbers p, q, such that 

<jJ(p) + <jJ(q) = 2m. 

If we relax the condition that p and q be prime, then it should be easier 
to show that there are always numbers p and q satisfying this equation. 
Erdös & Leo Moser ask if this can be done. 

Antonio Filz defined a prime circle of order 2m to be a circular per
mutation of the numbers from 1 to 2m with each adjacent pair summing 
to a prime. There is essentially only one prime circle for m = 1, 2 and 3; 

105 
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two for m = 4 and 48 for m = 5. Are there prime circles for all m? Give 
an asymptotic estimate of their number. 

Similarly, Margaret Kenney proposed the prime pyramid 

* 1 2 
1 2 3 

1 2 3 4 
1 4 3 2 5 

1 4 3 2 5 6 
1 7 

in which row n contains the numbers 1, 2, ... , n, begins with 1, ends with n, 
and the sum of two consecutive entries is prime. How many ways are there 
of arranging the numbers in row n? This problem was also proposed by 
Morris Wald; the solutions given are almost certain always to work, hut a 
proof of this may be almost as difficult as proving the Goldbach conjecture 
itself. The slightly less restricted problem in which the end numbers are 
not prescribed was earlier asked by E. T. H. Wang. 

Erdös asks if there are infinitely many primes p such that every even 
number ~ p - 3 can be expressed as the difference between two primes each 
~ p. For example, p = 13: 10 = 13 - 3, 8 = 11 - 3, 6 = 11 - 5, 4 = 7 - 3, 
2 = 5 - 3. 
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C2 Sums of consecutive primes. 

Let f (n) be the number of ways of representing n as the sum of (one or 
more) consecutive primes. For example 

5 = 2 + 3 and 41 = 11 + 13 + 17 = 2 + 3 + 5 + 7 + 11 + 13 
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so that F(5) = 2 and F(41) = 3. Leo Moser has shown that 

1 x 
lim - ~ f(n) = In2 

x-oo x ~ 
n=l 

and he asks: is f(n) = 1 infinitely often? Is f(n) = k solvable for every 
k? Do the numbers for which f(n) = k have a density for every k? Is 
limsupf(n) = oo? 

Erdös asks if there is an infinite sequence of integers 1 < al < a2 < ... 
such that f(n), the number of solutions of ai + ai+l + ... + ak = n, tends 
to infinity with n. He notes that if we insist that k > i, then it is not even 
known if f(n) > 0 for all but finitely many n. If ai = i, f(n) is the number 
of odd divisors of n. 

L. Moser, Notes on number theory III. On the sum of consecutive primes, Canad. 
Math. Bull., 6(1963) 159-161; MR 28 #75. 

C3 Lucky numbers. 

Gardiner and others define lucky numbers by modifying the sieve of 
Eratosthenes in the following way. Prom the natural numbers strike out 
all even ones, leaving the odd numbers. Apart from 1, the first remaining 
number is 3. Strike out every third member (those of shape 6k - 1) in the 
new sequence, leaving 

1,3,7,9,13,15,19,21,25,27,31,33, ... 

The next number remaining is 7. Strike out every seventh term (numbers 
42k - 23, 42k - 3) in this sequence. Next 9 remains: strike out every ninth 
term from what's left, and so on, until we are left with the lucky numbers 

1, 3, 7, 9, 13, 15, 21, 25, 31, 33, 37, 43, 49, 51, 63, 67, 69, 
73, 75, 79, 87, 93, 99, 105, 111, 115, 127, 129, 133, 135, 141, 
151, 159, 163, 169, 171, 189, 193, 195, 201, 205, 211, 219, 223, 
231, ... , 

Many quest ions arise concerning lucky numbers, parallel to the classical 
ones asked about primes. For example, if L 2 (n) is the number of solutions 
of l + m = n, where n is even and land mare lucky, then Stein & Stein 
find values of n such that L2 (n) = k for all k ~ 1769, and there is a 
corresponding conjecture to that made in C1. 
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R. G. Buschman & M. C. Wunderlich, Sieve-generated sequences with translated 
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David Hawkins & W. E. Briggs, The lucky number theorem, Math. Mag., 31(1957-
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299; MR 32 #5625. 
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M. C. Wunderlich & W. E. Briggs, Second and third term approximations of sieve
generated sequences, Illinois J. Math., 10(1966) 694-700; MR 34 #153. 

C4 Ulam numbers. 

Ulam constructed increasing sequences of positive integers by starting from 
arbitrary Ul and U2 and continuing with those numbers which can be ex
pressed in just one way as the sum of two distinct earlier members of the 
sequence. Recaman asked some of the quest ions which arise in connexion 
with the U-numbers (Ul = 1, U2 = 2). 

1, 2, 3, 4, 6, 8, 11, 13, 16, 18, 26, 28, 36, 38, 47, 48, 53, 57, 
62, 69, 72, 77, 82, 87, 97, 99, 102, 106, 114, 126, 131, 138, 145, 
148,155,175,177,180,182,189,197,206,209,219, ... 

(1) Can the sum of two consecutive U-numbers, apart from 1+2=3, be 
a U-number? 

(2) Are there infinitely many numbers 

23, 25, 33, 35, 43, 45, 67, 92, 94, 96, ... 

which are not the sum of two U-numbers? 
(3) (Ulam) Do the U-numbers have positive density? 
(4) Are there infinitely many pairs 

(1,2), (2,3), (3,4), (47,48), ... 

of consecutive U-numbers? 
(5) Are there arbitrarily large gaps in the sequence of U-numbers? 
In answer to Question 1, Frank Owens noticed that U19+U20 = 62+69 = 

131 = U31. In answer to Question 4, Muller calculated 20000 terms and 
found no further examples. On the other hand, more than 60% of these 
terms differed from another by exactly 2. 
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David Zeitlin asked if the sequence of U-numbers is complete in the 
sense that every positive number is expressible as the sum of distinct mem
bers of the sequence. Stefan Burr notes that this is so since, after 2, each 
term is less than twice the preceding one. 

The reader is warned that the name "U-numbers" was also used by 
Mahler in the theory of algebraic numbers in connexion with Alan Baker's 
characterization of "S-numbers" and "T-numbers". 

More generally, one can define s-additive sequences which are con
structed in the same way, except that each term is the sum of two earlier 
terms in exactly s ways, the U-numbers corresponding to s = 1. If s = 0 
the sequence is constructed from numbers which are not the sum of two 
distinct earlier members. Compare problems C9, E28 and E32 below. 
More generally still there are (s, t)-additive sequences where each term 
has exactly s representations as the sum of t distinct earlier members. In 
this notation, the U-numbers are the (1,2)-sequence initiated by Ul = I, 
U2 = 2. Steven Finch has experimented in this area and has a number 
of conjectures. For example, that the sequences initiated by (Ul, U2) with 
Ul < U2 and Ul 1- U2 contain only finitely many even terms in the cases 
(a) (Ul,U2) = (2,U2) for U2 ~ 5, (b) (4,U2), (c) (5,6), (d) Ul ~ 6 and even, 
and (e) Ul ~ 7 odd with U2 even; but infinitely many even terms otherwise. 

Steven R. Finch, Conjectures about s-additive sequences, Fibonacci Quart., 
29(1991) 209-214; MR 92j:l1009. 

Steven R. Finch, Are O-additive sequences always regular? Amer. Math. Monthly, 
99 (1992) 671-673. 

Steven R. Finch, On the regularity of certain I-additive sequences, J. Combin. 
Theory Sero A, 60(1992) 123-130; MR 93c:l1009. 

Steven R. Finch, Patterns in I-additive sequences, Experiment. Math., 1 (1992) 
57-63; MR 93hll014. 

P. Muller, M.Sc. thesis, University of Buffalo, 1966. 
Raymond Queneau, Sur les suites s-additives, J. Combin. Theory, 12(1972) 31-

71; MR 46 #1741. 
Bernardo Recaman, Questions on a sequence of Ulam, Amer. Math. Monthly, 

80(1973) 919-920. 
S. M. Ulam, Problems in Modern Mathematics, Interscience, New York, 1964, 

p. ix. 
Marvin C. Wunderlich, The improbable behaviour of Ulam's summation se

quence, in Computers and Number Theory, Academic Press, 1971, 249-257. 

e5 Sums determining members of a set. 

Leo Moser asked, and Selfridge, Straus and others largely settled, to what 
extent the sums of all the pairs of numbers in a set determine the set. They 
show that if the cardinality is not apower of two, then the members are 
determined. Suppose that Yl, Y2, ... , Ys are the sums Xi + Xj (i =I- j) of the 
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numbers Xi, X2, •.• , X2k, so that s = 2k - l (2k - 1). Are there more than 
two sets {xd which give rise to the same set {Yj}? If k = 3 there may be 
three such sets, for example. 

{±1, ±9, ±15, ±19}, {±2, ±6, ±12, ±22}, {±3, ±7, ±13, ±21} 

but there can't be more than three. For k > 3 the problem is open. The 
corresponding problem where sums of triples of elements of a set are given 
is also settled, except in two cases: do the sums of three distinct elements of 
{Xl, X2, ••. , Xn } determine the set if n = 27 or n = 486? The corresponding 
problem for sums of Jour distinct elements was settled by EwelI. 

John A. EwelI, On the determination of sets by sets of sums of fixed order, Canad. 
J. Math., 20(1968) 596-61l. 

B. Gordon, A. S. Fraenkel & E. G. Straus, On the determination of sets by the 
sets of sums of a certain order, Pacific J. Math., 12(1962) 187-196; MR 27 
#3576. 

J. L. Selfridge & E. G. Straus, On the determination of numbers by their sums 
of a fixed order, Pacific J. Math., 8(1958) 847-856; MR 22 #4657. 

e6 Addition chains. Brauer chains. Hansen 
chains. 

An addition chain for n is a sequence 1 = ao < al < ... < ar = n 
with each member after the zeroth the sum of two earlier, not necessarily 
distinct, members. For example 

1, 1+1,2+2,4+2,6+2,8+6 and 1, 1+1,2+2,4+2,4+4,8+6 
are addition chains for 14 of length r = 5. The minimal length of an 
addition chain for n is denoted by Zen). 

The main unsolved problem is the Scholz conjecture 

i l(2n - 1) ::; n - 1 + l(n) ? 

It has been proved for n = 2a , 2a +2b, 2a +2b +2c , 2a +2b +2c +2d by Utz, 
Gioia et al, and Knuth, and demonstrated for 1 ::; n ::; 18 by Knuth and 
Thurber. Brauer proved the conjecture for those n for which a shortest 
chain exists which is a Brauer chain, that is one in which each member 
uses the previous member as a summand. The second of the examples is 
not a Brauer chain, because the term 4+4 does not use the summand 6. 
Such an n is called a Brauer number. Hansen proved that there are 
infinitely many non-Brauer numbers, but also that the Scholz conjecture 
still holds if n has a shortest chain which is a Hansen chain, that is one 
for which there is a subset H of the members such that each member of the 
chain uses the largest element of H which is less than the member. The 
second example is a Hansen chain, with H = {I, 2, 4, 8}. Knuth gives the 
example 

1,2,4,8,16,17,32,64,128,256,512,1024,1041,2082,4164,8328,8345,12509 
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of a Hansen chain (H={l, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 1041, 
2082, 4164, 8328, 8345}) for n = 12509 which is not a Brauer chain (32 
does not use 17) and no such short Brauer chain exists for n = 12509. 

Are there non-Hansen numbers? 
It is clear that l(2n) ::; l(n) + 1. That strict inequality is possible 

was shown by Knuth with l(382) = l(191) = 11. The smallest even n 
with l(2n) = l(n) is 13818, given by Thurber, who also noticed the odd 
adjacent pair 22453, 22455. Andrew Granville asks if there are n for which 
l(4n) = l(2n) = l(n). 

D. J. Newman considers a computer which costs 1 cent to perform each 
addition but nothing to perform multiplication. Then the addition chain 
for n costs maximally (1ogn)~+O(l) instead oflogn, where log is to base 2. 

For a good survey and list of problems, see Subbarao's article. 
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21(1969) 675-683; MR 40 #114. 



C7. The money-changing problem. 113 
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1989, pp. 555-574; MR 93a:11105. 
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E. G. Thurber, The Scholz-Brauer problem on addition chains, Pacific J. Math., 
49(1973) 229-242; MR 49 #7233. 

E. G. Thurber, On addition chains l(mn) ::::; l(n) - band lower bounds for c(r), 
Duke Math. J., 40(1973) 907-913. 

E. G. Thurber, Addition chains and solutions of l(2n) = l(n) and 
l(2n - 1) = n + l(n) - 1, Discrete Math., 16(1976) 279-289; MR 55 #5570; 
Zbl. 346.10032. 

W. R. Utz, A note on the Scholz-Brauer problem in addition chains, Proc. Amer. 
Math. Soc., 4(1953) 462-463; MR 14, 949. 

C. T. Wyburn, A note on addition chains, Proc. Amer. Math. Soc., 16(1965) 
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C7 The money-changing problem. 

Given n ~ 2 integers 0 < al < a2 < ... < an with (al, a2, ... , an) = 1, 
then N = L:~=l aiXi has a solution in nonnegative integers Xi if N is large 
enough. The weIl known coin problem of Frobenius is to determine the 
greatest N = g(al, a2, ... , an) for which there is no solution. Sylvester 
showed that g(al, a2) = (al - 1)(a2 - 1) - 1 and that the number of non
representable numbers is (al - 1)(a2 - 1)/2. The case n = 3 was first 
solved explicitly by Selmer & Beyer, using a continued fraction algorithm. 
Their result was simplified by Rödseth and later by Greenberg. No general 
formulas are known for n ~ 4. Roberts found the value of 9 if the ai are in 
arithmetic progression. 

Upper bounds for 9 are also sought. In 1942 Brauer showed that 
g(al, a2,·.·, an) ::::; L:~=l ai (di-ddi - 1) where di = (al, a2,·.·, ai). Erdös 
& Graham showed that 

g(al, a2, ... ,an) :::; 2an-1 L an/n J - an 

(which is best possible if n = 2 and a2 is odd). They define 

'Y(n, t) = maxg(al, a2,.·., an) 
{a.} 

where the maximum is taken over all 0 < al < a2 < ... < an :::; t with 
(al,a2, ... ,an) = 1. Their theorem shows that 'Y(n,t) < 2t2/n and they 
proved that 'Y(n, t) ~ t2/(n - 1) - 5t. Lewin showed that 1'(3, t) = L(t-
2)2/2 J -1 and generally that g(al, a2, . .. , an) :::; L(an-l -1)(an - 2)/2J -1 
for n ~ 3. 

Ernst Selmer was of considerable help in rewriting sections C7 and 
C12; his paper quoted below contains all relevant references up to 1976. 
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e8 Sets with distinct sums of subsets. 

The set of integers {2 i : 0 :::; i :::; k}, of eardinality k + 1, has the sums of 
all its 2k+1 subsets distinct. Erdös has asked for the maximum number, 
m, of positive integers al < a2 < ... < a m :::; 2 k , with all sums of subsets 
distinet. With Loo Moser he showed that k + 1 :::; m < k + ~ log k + 2 where 
the logarithm is to base 2. Noam Elkies improved the eonstant 2 on the 
right to ~ log 'Ir < 0.826. 

Conway & Guy have given a sequenee, Uo = 0, Ul = 1, Un+l = 2un -

U n - r (n ~ 1) where r is the nearest integer to ffn, from which may be 
derived the set of k + 2 integers 

A = {ai = Uk+2 - uk+2-i : 1 :::; i :::; k + 2}. 

They eonjeeture that this set has subsets with distinct sums (established 
by Mike Guy for k :::; 40 and by Fred Lunnon for n :::; 79). For k ~ 21, 
Uk+2 < 2 k , so that m ~ k + 2 for k ~ 21, sinee onee a set with the desired 
eardinality is found, its eardinality may be inereased by doubling the size of 
eaeh member and adjoining the member 1 (or any odd number). Conway 
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& Guy conjecture that A gives, in essence, the best possible solution, m = 
k+2, to the problem, though Lunnon defines a dass of generalized Conway
Guy sequences, some ofwhich give a smaller limit (e.g., 0.220963) than that 
of un /2n (~0.23512531). Erdös offers $500.00 for a proof or disproof of 
m = k+O(l). 
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C9 Packing sums of pairs. 

Suppose that m is the maximum number of integers 1 ~ al < a2 < ... < 
am ~ n in a Sidon sequence, Le., one in which the sums of pairs, ai + aj, 
are all different. It is known that 

The upper bound is due to Lindstrom, improving a result of Erdös & Thran. 
The lower bound is due to Singer. Erdös & Turan ask, is m = n 1/ 2 + 0(1)? 
Erdös offers $500 for settling this question. 

Cameron & Erdös ask for an estimate of F(n), the number of Sidon 
sequences whose members are at most n. With m as above, it is not 
even known if F(n)/2m -t 00, only that the upper limit is infinite. They 
believe that F(n) < nEVn. They would also like an estimate of the number 
of maximal Sidon sequences (those to which no further a ~ n can be 
adjoined). 
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If {ai} continues as an infinite sequence, Erdös & Turan proved that 
limsupak/k2 = 00 and gave a sequence with liminf ak/k2 < 00. Ajtai, 
Koml6s & Szemeredi have shown that there is such a sequence with ak < 
ck3/lnn. 

Erdös & Renyi proved that there is a sequence satisfying ak < k2+€ for 
which the number of solutions of ai + aj = t is ~ c. 

Erdös notes that L:=l a-;1/2 < c(lnx)1/2 and asks if this is best possi
ble. He asks if it is true that 

1 1 
lnx L ai + a. --+ 0 

ai+a3:Sx J 

as x --+ 00 and suggests that perhaps 

1 
" --- < c1lnlnx. 
L..J ai + a· 

ai+aj<X J 

1t is known that it can be > C2 In In x. 
Erdös also asks if a Sidon sequence al < a2 < ... < ak can be prolonged 

to a perfect difference set (see eIO), i.e., 

with the differences au - av , 1 ~ u, v ~ p + 1, u =/:. v, representing every 
nonzero residue mod p2 + p + 1 exactly once? 

He could not even decide if it can be prolonged to 

i.e., if it can be made as dense as possible asymptotically. 
Let al < a2 < ... < an be any sequence of integers. 1s it true that it 

contains a Sidon subsequence aiu'" ,ai", with m = (l+o(l))n!? Kom16s, 
Sulyok & Szemeredi (see EU) proved this with m > cn!. 

If f(n) is the number of solutions of n = ai + aj, is there a sequence 
with 

limf(n)/lnn = c? 

Erdös & Turan conjecture that if f(n) > 0 for all sufficiently large n, or 
if ak < ck2 for all k, then limsupf(n) = 00; Erdös also offers $500 for 
settling this question. 

Graham & Sloane rephrase the quest ion in two more obviously packing 
forms: 

Let va(k) [respectively vß(k)] be the smallest v such that there is a 
k-element set A = {O = al < a2 < ... < ak} of integers with the property 
that the sums ai + aj for i < j [respectively i ~ j] belong to [0, v] and 



C9. Packing sums of pairs. 117 

represent each element of [0, v] at most once. The set A associated with vß 
is often called a B2-sequence (compare E28). 

They give the values of Va and Vß displayed in Table 3 and note that 
the bounds 

2k2 - O(k3/ 2 ) < Va, Vß < 2k2 + O(k36/ 23 ) 

follow from a modification of the Erdös-'I\min argument. 

k va(k) 
2 1 
3 3 
4 6 
5 11 
6 19 
7 31 
8 43 
9 63 

10 80 

Table 3. Values of Va, Vß and Exemplary Sets. 
Example of A vß(k) Exampie of A 

{O,l} 2 {O,l} 
{0,1,2} 6 {0,1,3} 

{0,1,2,4} 12 {0,1,4,6} 
{0,1,2,4,7} 22 {0,1,4,9,11} 

{0,1,2,4,7,12} 34 {0,1,4,1O,12,17} 
{0,1,2,4,8,13,18} 50 {0,1,4,1O,18,23,25} 

{0,1,2,4,8,14,19,24} 68 {0,1,4,9,15,22,32,34} 
{0,1,2,4,8,15,24,29,34} 88 {0,1,5,12,25,27,35,4l,44} 

{0,1,2,4,8,15,24,29,34,46} 110 {0,1,6,10,23,26,34,41,53,55} 

Cilleruelo has shown that there is a sequence {ak}' ak « k2 such that 
the sums a~ + a; are all different. 

If g(m) is the Iargest integer n such that every set of integers of size m 
contains a subset of size n whose pairwise sums are distinct, then Abbott 
has shown that g(m) > cml / 2 for any constant C< 225 and all sufficiently 
Iarge m. 

In 1956 Erdös proved the existence of a sequence S such that all suf
ficiently Iarge integers n are represented between Cl In n and C2 In n times 
as the sum of two members of S, and more recentIy Erdös & Tetali have 
obtained the corresponding resuit for the sum of k members of S. 

Harvey L. Abbott, Sidon sets, Canad. Math. Bull., 33(1990) 335-341; MR 91k: 
11022. 

Miklos Ajtai, Janos Komlos & Endre Szemeredi, A dense infinite Sidon sequence, 
European J. Combin., 2(1981) 1-11; MR 83f:10056. 

R. C. Bose & S. Chowla, Theorems in the additive theory of numbers, Comment. 
Math. Helv., 37(1962-63) 141-147. 

Javier Cilleruelo, B2-sequences whose terms are squares, Acta Arith., 55 (1990) 
261-265; MR 9li:ll023. 

Javier Cilleruelo & Antonio Cordoba, B 2 [ooJ-sequences of square numbers, Acta 
Arith., 61(1992) 265-270. 

P. Erdös, Some of my forgotten problems in number theory, Hardy
Ramanujan J., 15 (1992) 34-50. 

P. Erdös & R. Freud, On sums of a Sidon-sequence, J. Number Theory, 38(1991) 
196-205. 

P. Erdös & R. Freud, On Sidon-sequences and related problems (Hungarian), 
Mat. Lapok, 2(1991) 1-44. 
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P. Erdös & W. H. J. Fuchs, On a problem of additive number theory, J. London 
Math. Soc., 31(1956) 67-73. 

P. Erdös & E. Szemeredi, The number of solutions of m = L~=l xf, Proc. Symp. 
Pure Math. Amer. Math. Soc., 24(1973) 83-90. 

Paul Erdös, Melvyn B. Nathanson & Prasad Tetali, Independence of solution 
sets and minimal asymptotic bases (preprint, 1993). 
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Random Structures Algorithms, 1(1990) 245-261; MR 92c:11012. 

P. Erdös & P. '!Uran, On a problem of Sidon in additive number theory, and 
on some related problems, J. London Math. Soc., 16(1941) 212-215; MR 3, 
270. Addendum, 19(1944) 208; MR 7, 242. 

R. L. Graham & N. J. A. Sloane, On additive bases and harmonious graphs, 
SIAM J. Alg. Discrete Math., 1(1980) 382-404. 

H. Halberstarn & K. F. Roth, Sequences, 2nd Edition, Springer, New York, 1982, 
Chapter 2. 

Jia Xing-De, Some problems and results on subsets of asymptotic bases, Qufu 
Shi/an Dame Xuebao Ziran Kexue Ban, 13(1987) 45-49; MR 88k:11015. 

Jia Xing-De, On the distribution of a B2-sequence, Qufu Shi/an Dame Xuebao 
Ziran Kexue Ban, 14(1988) 12-18; MR 89j:11023. 

Jia Xing-De, On finite Sidon sequences, J. Number Thoery, 44(1993) 84-92. 
F. Krückeberg, B2-Folgen und verwandte Zahlenfolgen, J. reine angew. 

Math., 206(1961) 53--60. 
B. Lindström, An inequality for B2-sequences, J. Combin. Theory, 6(1969) 211-

212; MR 38 #4436. 
Imre Z. Ruzsa, A just basis, Monatsh. Math., 109(1990) 145-151; MR 91e: 

11016. 
J. Singer, A theorem in finite projective geometry and some applications to num

ber theory, Trans. Amer. Math. Soc., 43(1938) 377-385; Zbl19, 5. 
Vera T. S6s, An additive problem in different structures, Graph Theory, Combi

natorics, Algorithms, and Applications, (SIAM Conf., San Francisco, 1989), 
1991, 486-510; MR 92k:11026. 

elO Modular difference sets and error correcting 
codes. 

Singer's result, mentioned in C9, is based on perfeet difference sets, Le., 
a set of residues aba2, ... , ak+l (mod n) such that every nonzero residue 
(mod n) can be expressed uniquely in the form ai - aj. For example, 
{I, 2, 4} mod 7 and {I, 2, 5, 7} mod 13. Perfect difference sets can exist only 
if n = k2 + k + 1, and Singer proved that such a set exists whenever k 
is a prime power. Marshall Hall has shown that numerous non-prime
powers cannot serve as values of k and Evans & Mann that there is no 
such k < 1600 that is not a prime power. It is conjectured that no perfect 
difference set exists unless k is a prime power. 

Can a given finite sequence, which contains no repeated differences, 
always be extended to form a perfect difference set? 
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Perfeet difference sets may be used to make Golomb rulers. Subtract 
one from the elements of the difference set, e.g., {0,1,4,6} and take these 
as marks on a ruler of length 6, which can be used to measure all the 
lengths 1, 2, 3, 4, 5, 6. More generally we may look for less than perfect 
rulers of length n with k + 1 marks {O, al, ... ,ak-b n} subject to various 
conditions. E.g., (a) all (k~l) distances distinct, (b) maximum number 
of distinct distances for given n and k, (c) all integer distances from 1 
up to some maximum e to be measurable. We cannot satisfy all of these 
conditions of k :2: 4, but Leech has found examples of perfect 'jointed' 
rulers. The trees 

1 .....-

1 2 
• • • 

1 5 

2 
1 3 2 

• • • • 

have edges with the lengths shown, and may be used to measure alliengths 
from 1 up to 1, 3, 6, 6, 15. 

Gibbs & Slater, Herbert Taylor and Yang Yuan-Sheng have improved 
Leech's results for paths and for more general trees to 

n 2 
paths 1 
trees 1 

345 
3 6 9 
369 

678 
13 18 24 
15 20 26 

9 10 
29 37 
34 41 

11 
45 

(48) 

12 
(51) 
(55) 

where the entries in parentheses are not necessarily best possible. There are 
connexions with the gracefullabelling and harmonious labelling of graphsj 
see C13 and a possibly forthcoming combinatorics volume in this series. 

Dean Hickerson asks for the maximum number m such that the integers 
1 S al < a2 < ... < am S n have differences aj - ai, j > i, among which 
the integer 8 occurs at most 28 times. 

Graham & Sloane exhibit the problem of difference sets as the modular 
version of the packing problems of C9. They define v")'(k) [respectively 
v6(k)] as the smallest number v such that there exists a subset A = {O = 

al < a2 < ... < ak} of the integers (mod v) with the property that each 
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r can be written in at most one way as r == ai + aj mod v with i < j 
[respectively i S j]. 

Their interest in v"( is in its application to error-correcting codes. 
If A(k, 2d, w) is the maximum number of binary vectors with w ones and 
k - w zeros (words of length k and weight w) such that any two vectors 
differ in at least 2d places, then (for d = 3) 

A(k,6,w) ~ (~) / v"((k) 

(and the result for general d uses sets for which all sums of d - 1 distinct 
elements are distinct modulo v). 

They note that A(k, 2d, w) has been studied by Erdös & Hanani, by 
Schönheim, and by Stanton, Kalbfleisch & Mullin in the context of extremal 
set theory. Let D(t, k, v) be the maximum number of k-element subsets of 
a v-element set S such that every t-element subset of S is contained in at 
most one of the k-element subsets. Then D(t, k, v) = A(v, 2k - 2t + 2, k). 

The values of V{j in Table 4 are from Baumert's Table 6.1 and those of 
v"( from Graham & Sloane who give the following bounds 

k2 - O(k) < v"((k) < k2 + O(k36/ 23 ), 

k2 - k + 1 S v{j(k) < k2 + O(k36/ 23 ). 

Equality holds on the left of the latter whenever k - 1 is a prime power. 

k v"((k) 
2 2 
3 3 
4 6 
5 11 
6 19 
7 28 
8 40 
9 56 
10 72 

Table 4. Values of v"(' V{j and Exemplary Sets. 

Example of A v{j(k) Example of A 
{0,1} 3 {0,1} 

{0,1,2} 7 {0,1,3} 
{0,1,2,4} 13 {0,1,3,9} 

{0,1,2,4,7} 21 {0,1,4,14,16} 
{0,1,2,4,7,12} 31 {0,1,3,8,12,18} 

{0,1,2,4,8,15,20} 48 {0,1,3,15,20,38,42} 
{0,1 ,5,7,9,20,23,35} 57 {O, 1 ,3, 13,32,36,43,52} 

{0,1,2,4,7,13,24,32,42} 73 {0,1,3,7,15,31,36,54,63} 
{0,1,2,4,7,13,23,31,39,59} 91 {0,1,3,9,27,49,56,61,77,81} 
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F. T. Boesch & Li Xiao-Ming, On the Iength of Golomb's ruiers, Math. Appl., 
2(1989} 57-61; MR 91h:ll015. 
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John Leech, On the representation of 1, 2, ... , n by differences, J. London Math. 
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923-925. 
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J. C. P. Miller, Difference bases: three problems in the additive theory of num
bers, A. O. L. Atkin & B. J. Birch (editors) Computers in Number Theory, 
Academic Press, London, 1971, pp. 299-322; MR 47 #4817. 

J. Schönheim, On maximal systems of k-tuples, Stud. Sei. Math. Hungar., 1(1966) 
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R. G. Stanton, J. G. Kalbfieisch & R. C. Mullin, Covering and packing designs, 
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CII Three-subsets with distinct sums. 

One can generalize the ideas of C9 and E28 and define a Bh-sequence to 
be one in which the sums of h terms are distinct. Bose & Chowla showed 
that if Ah(n) is the largest cardinality of a Bh-sequence in [1, n], then 

In the opposite direction, Jia has shown that if h = 2k, then 
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For h = 2k -1, Chen and Graham independently proved the bound 

For h = 3 Graham obtained the further small improvement 

A3(n) ::; (4 - 2~8) i ni (1 + 0(1)). 
In the infinite case, Erdös offers $500.00 for a proof or disproof of 

i.. 1· . f Ah(n) 0 
Imlll n i / h = ? 

For h = 2 this was proved by Erdös himself, and for h = 4 by N ash. The 
case h = 6 was treated by Jia, and more generally Chen showed that if 
h = 2k was even, then 

It remains an open problem to prove this when h odd. 
The paper of Chen & KlliSve gives references to the electrical engineering 

literature on Bh-sequences. 

W. C. Babcock, Intermodulation interference in radio systems, Bell Systems Tech. 
J., 32(1953) 63-73. 

R. C. Bose & S. Chowla, Report [nst. Theory of Numbers, Univ. of Colorado, 
Boulder, 1959, p. 335. 

R. C. Bose & S. Chowla, Theorems in the additive theory of numbers, Comment. 
Math. Helvet., 37(1962-63) 141-147. 

Sheng Chen, On size of finite Sidon sequences, Proc. Amer. Math. Soc., (to 
appear). 

Sheng Chen, A note on B2k-sequences, J. Number Theory, (1994) 
Sheng Chen, On Sidon sequences of even orders, Acta Arith., 64(1993) 325-330. 
Chen Wen-De & Torliev Kklve, Lower bounds on multiple difference sets, Discrete 

Math., 98(1991) 9-21; MR 93a:05028. 
S. W. Graham, Upper bounds for B 3-sequences, Abstract 882-11-25, Abstracts 

Amer. Math. Soc., 14(1993) 416. 
S. W. Graham, Upper bounds for Sidon sequences, (preprint 1993). 
D. Hajela, Some remarks on Bh[gJ-sequences, J. Number Theory, 29(1988) 311-

323; MR 90d:11022. 
M. Helm, On B 2k-sequences, Acta Arith., 63(1993) 367-371. 
M. Helm, Aremark on B 2k-sequences, J. Number Theory, (to appear). 
Jia Xing-De, On B6-sequences, Qufu Shifan Daxue Xuebao Ziran Kexue Ban, 

15(1989) 7-11; MR 90j:11022. 
Jia Xing-De, on B2k-sequences, J. Number Theory, (to appear). 
T. KI~ve, Constructions of Bh[g]-sequences, Acta Arith., 58(1991) 65-78; MR 
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Li An-Ping, On B3-sequences, Acta Math. Sinica, 34(1991) 67-71; MR 92f: 
11037. 

B. Lindström, Aremark on B4-sequences, J. Combin. Theory, 7(1969) 276-277. 
John C. M. Nash, On B4-sequences, Canad. Math. Bull., 32(1989) 446-449; MR 

91e: 11025. 

C12 The postage stamp problem. 

The covering problem whieh is dual to the paeking problem C9 goes baek 
at least to Rohrbaeh. A popular form of it eoneerns the design of a set 
of integer denominations of postage stamp, Ak = {a1, a2, ... , ak} with 
1 = a1 < a2 < ... < ak to be used on envelopes with room for at most h 
stamps, so that all integer amounts of postage up to a given bound ean be 
affixed. What is the smallest integer N(h, Ak ) whieh is not representable by 
a linear eombination 2:7=1 Xiai with Xi 2: 0 and2:7=1 Xi S h? The number 
of eonseeutive possible amounts of postage, n(h, Ak) = N(h, Ak) - 1 is 
ealled the h-range (German: h-Reiehweite) of Ak . In this eontext Ak is 
ealled an additive basis of order h or h-basis. At first the main interest 
was in the 'global' problem: Given h and k, find an extremal basis Ak 
with largest possible h-range, n(h, k) = n(h, Ak) = maxAk n(h, Ak). More 
reeently the 'loeal' aspeet has eome more into foeus: Find n(h, Ak ) when 
hand a particular basis A k are given. 

The loeal problem is eompletely solved only for k = 2 and k = 3. Triv
ially n(h, A2) = (h + 3 - a2)a2 - 2 for h 2: a2 - 2. R0dseth developed a 
general method, based on a eontinued fraetion algorithm, for determining 
n(h, A3 ). From this, Selmer derived explicit formulas eovering (asymptot
ically) about 99% of all A3 . 

From the formula for n(h, A2 ) Stöhr eoncluded that 

n(h, 2) = l(h2 + 6h + 1)/4J. 

The global problem for k = 3 was solved by Hofmeister, who showed in 
particular that, for h 2: 20, 

n(h,3) = ~(i)3+6(i)2+Ah+B 
where A and B depend on the residue of h modulo 9. Mossige showed that 

n(h,4) 2: 2.008 (~)4 + O(h3) 

and, together with Kirfel (so far unpublished) that this bound is sharp. 
Kirfel has also shown that the limit 

exists for all k 2: 1. Kolsdorf showed that 
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Mrose showed that 

for all positive integers h - 1, h2, kb k2 and deduced that if ki (i = 1, 2) 
are fixed and 

then 

( h )k1+k2 
n(h, kl + k2 ) ~ 0!10!2 k

l 
+ k2 + O(hkl+k2-1). 

Thus if Xi are fixed nonnegative integers with k = L~=l iXi then 

The best general upper bound for fixed k is due to R0dseth: 

(k - 1)k-2 (h) k k-l 
n(h, k)::; (k _ 2)! k + O(h ). 

For fixed h, emphasis has been on the case h = 2. In 1937 Rohrbach 
showed that 

with Cl = 1 and C2 = 1.9968. After several improvements the best known 
results are Cl = ~ (Mrose) and C2 = 1.9208 (Klotz). Windecker showed 
that 

4 (k)3 16 (k)2 n(3, k) ~ 3" 3" + 3" 3" + O(k). 

Again, with (*), if Yi are fixed nonnegative integers with h = L~=l iYi then 

Graham & Sloane (compare C9, CIO) define noCk) [respectively nß(k)] 
as the largest number n such that there is a k-element set A = {O = al < 
a2 < ... < ak} of the integers with the property that each r in [1, n] can 
be written in at least one way as r = ai + aj with i < j [respectively 
i ::; j], so that their nß(k) is here written n(2, k - 1), and their noCk) 
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corresponds to the problem of two stamps of different denominations, with 
a zero denomination included. 

They give the values for na(k) and nß(k) in Table 5. 

Table 5. Values for na(k) and nß(k) and Exemplary Sets. 

k n",(k) Example of A nß(k) Example of A 
2 1 {0,1} 2 {0,1} 
3 3 {0,1,2} 4 {0,1,2} 
4 6 {0,1,2,4} 8 {0,1,3,4} 
5 9 {0,1,2,3,6} 12 {0,1,3,5,6} 
6 13 {0,1,2,3,6,1O} 16 {0,1,3,5,7,8} 
7 17 {0,1,2,3,4,8,13} 20 {0,1,2,5,8,9,1O} 
8 22 {0,1,2,3,4,8,13,18} 26 {0,1,2,5,8,1l,12,13} 
9 27 {0,1,2,3,4,5,10,16,22} 32 {0,1,2,5,8,1l,14,15,16} 
10 33 {0,1,2,3,4,5,1O,16,22,28} 40 {0,1,3,4,9,11,16,17,19,20} 
11 40 {0,1,2,4,5,6,10,13,20,27,34} 46 {0,1,2,3,7,1l,15,19,21,22,24} 
12 47 {0,1,2,3,6,1O,14,18,21,22,23,24} 54 {0,1,2,3,7,11,15,19,23,25,26,28} 
13 56 {0,1,2,4,6,7,12,14,17,21,30,39,48} 64 {0,1,3,4,9,1l,16,21,23,28,29,31,32} 
14 65 {0,1,2,4,6,7,12,14,17,21,30,39,48,57} 72 {0,1,3,4,9,1l,16,20,25,27,32,33,35,36} 

Tables for more general n(h, k) were computed by Lunnon and extended 
by Mossige and recently by Challis. 

Serious students of these problems will consult the encyclopredic three 
volumes of Seimer, which contain 121 references. A useful summary, with 
47 references, has been prepared by Djawadi & Hofmeister. 

M. F. Challis, Two new techniques for computing extremal h-bases Ak , Comput. 
J., 36(1993) 117-126. [An updating of the appendix is available from the 
author.] 

Mehdi Djawadi & Gerd Hofmeister, The postage stamp problem Mainzer Semi
narberichte, Additive Zahlentheorie, 3(1993) 187-195. 

Paul Erdös & Melvyn B. Nathanson, Additive bases with many representations, 
Acta Arith., 52(1989) 399-406; MR 91e:ll015. 

N. Hämmerer & G. Hofmeister, Zu einer Vermutung von Rohrbach, J. reine 
angew. Math., 286/287(1976) 239-247; MR 54 #10181. 

G. Hofmeister, Asymptotische Abschätzungen für dreielementige extremalbasen 
in natürlichen Zahlen, J. reine angew. Math., 232(1968) 77-101; MR 38 
#1068. 

G. Hofmeister, Die dreielementigen Extremalbasen, J. reine angew. Math., 339 
(1983) 207-214. 

G. Hofmeister, C. Kirfel & H. Kolsdorf, Extremale Reichweitenbasen, No. 60, 
Dept. Pure Math., Univ. Bergen, 1991. 
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e13 The corresponding modular covering 
problem. Harmonious labelling of graphs. 

Just as CIO was the modular version of the packing problem C9, so we can 
propose the modular version of the corresponding covering problem C12. 

Graham & Sloane complete their octad of definitions with n"'{(k) [re
spectively no(k)] as the largest number n such that there is a subset 
A = {o = al < a2 < ... < ad of the residue classes modulo n with the 
property that each r can be written in at least one way as r == ai+aj mod n 
with i < j [respectively i ::; j]. 

They caU a connected graph with v vertices and e ~ v edges har
monious if there is a labelling of the vertices x with distinct labels l(x) 
so that when an edge xy is labeUed with l(x) + l(y), the edge labels 
form a complete system ofresidues (mod e). Trees (for which e = v-I) are 
also caUed harmonious if just one vertex label is duplicated and the edge 
labels form a complete system (mod v-I). The connexion with the present 
problem is that n"'{(v) is the greatest number of edges in any harmonious 
graph on v vertices. 

For example, from Table 6 we note that n"'{(5) = 9 is attained by the 
set {0,1,2,4,7} so that a maximum of 9 edges can occur in a harmonious 
graph on 5 vertices (Figure 6). 

Table 6. Values of n"'{, no and Exemplary Sets. 
k n"'{(k) Example of A no(k) Example of A 
2 1 3 {0,1} 
3 3 {0,1,2} 5 {0,1,2} 
4 6 {0,1,2,4} 9 {0,1,3,4} 
5 9 {0,1,2,4,7} 13 {0,1,2,6,9} 
6 13 {0,1,2,3,6,1O} 19 {0,1,3,12,14,15} 
7 17 {0,1,2,3,4,8,13} 21 {0,1,2,3,4,1O,15} 
8 24 {0,1,2,4,8,13,18,22} 30 {0,1,3,9,1l,12,16,26} 
9 30 {0,1,2,4,10,15,17,22,28} 35 {0,1,2,7,8,1l,26,29,30} 

10 36 {0,1,2,3,6,12,19,20,27,33} 

Graham & Sloane compare and contrast harmonious graphs with grace
ful graphs, which will be discussed in the graph theory chapter of a later 
volume in this series. A graph is graceful if, when the vertex labels are 
chosen from [0, e] and the edge labels are ca1culated by Il(x) -l(y)l, the 
latter are aU distinct (i.e., take the values [1, e]). 
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Figure 6. Maximal Harmonious Graphs. 

Trees are conjectured to be both harmonious and graceful, but these 
are open questions. A cycle Cn is harmonious just if n is odd, and graceful 
just if n == 0 or 3 mod4. The friendship graph or windmill is harmonious 
just if n ~ 2 mod 4 and graceful just if n == 0 or 1 mod4. Fans and wheels 
are both harmonious and graceful, as is the Petersen graph. The graphs of 
the five Platonic solids are naturally graceful and one would expect them 
to be harmonious, but this is not so for the cube or octahedron. Joseph 
Gallian maintains a bibliography of graph labelling. 

Joseph A. Gallian, A survey - recent results, conjectures and open problems in 
labeling graphs, J. Graph Theory, 13(1989) 491-504; MR 90k:05132. 

C14 Maximal sum-free sets. 

Denote by l(n) the largest l so that if al, a2, ... , an are any distinct 
natural numbers, one can always find l of them so that aiJ + aik =F am 

for 1 ~ j < k ~ l, 1 ~ m ~ n. Note that j =F k, else the set {ai = 
2i 11 ~ i ~ n} would imply that l(n) = O. Aremark of Klarner shows that 
l(n) > cln n. On the other hand, the set {2i + 0, ±111 < i ~ 8 + I} implies 
that l(38) < 8+3, so l(n) < !n+3. Selfridge extends this by using the set 
{(3m + t)2m - i I-i< t < i, 1 ~ i ~ m} to show that l(m2 ) < 2m. Choi, 
using sieve methods, has furt her improved this to l(n) «n°.4+E. 

The problem can be generalized to ask if, for every l, there is an no = 
no(l) so that if n > no and al, a2, ... , an are any n elements of a group 
with no product ait ai2 = e, the unit [here i l , i 2 may be equal, so there is 
no ai of order 1 or 2, and no ai whose inverse is also an ai] then there are 
l of the ai such that aiJ aik =F am , 1 ~ j < k ~ l, 1 ~ m ~ n. This has not 
even been proved for l = 3. 

For the generalization to sets containing no solution of alXl + ... + 
akXk = Xk+1 see the papers of Funar and Moree. 
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Math., 22(1970) 1185-1195; MR 42 #1897; J. Number Theory, 5(1973) 
293-300; MR 48 #11356]. 

CI5 Maximal zero-sum-free sets. 

Erdös & Heilbronn asked for the largest number k = k(m) of distinct 
residue classes, modulo m, so that no subset has sum zero. For example, 
the set 

1, -2, 3, 4, 5, 6 

shows that k(20) > 6, and in fact equality holds. The pattern of this 
example shows that 

k? l( -1 + V8m + 9)/2J (m ? 5) 

Equality holds for 5 ~ m ~ 24. However, Selfridge observes that if m is of 
the form 2(l2 + l + 1), the set 

1, 2, ... , l - 1, l, ~m, ~m + 1, ... , ~m + l 

implies that 
k ? 2l + 1 = V2m - 3 
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In fact he conjectures that, for any even m, this set or the set with l deleted 
always gives the best result. For example, k( 42) ~ 9. 

On the other hand, if p is a prime in the interval 

!k(k + 1) < p < !(k + l)(k + 2) 

he conjectures that k(P) = k, where the set can be simply 

1, 2, ... , k 

The case k( 43) = 8 was confirmed by Clement Lam, so k is not a monotonie 
function of m. 

The only case where a better inequality is known than k ~ l y2m - 3 J 
is k(25) ~ )50 - 1 = 7, as is shown by the set 1, 6, 11, 16, 21, 5, 10. If m 
is of the form 25l(l + 1)/2 and odd, then it is possible to improve on the set 
1, -2, 3, 4, ... , but if m is of that form and even, then the construction 
already given for m even is always better. 

Is k = l( -1 + y8m + 9)/2J for an infinity of values of m? 
For whieh values of mare there realizing sets none of whose members 

are prime to m? For example, m = 12: {3,4,6,1O} or {4,6,9,1O}. Is there a 
value of m for whieh all realizing sets are of this type? 

Erdös & Reilbronn proved that if al, a2, ... , ak, k ~ 3(6p)1/2, are 
distinct residues modp, where p is prime, then every residue modp can be 
written in the form L:7=1 Eiai, Ei = 0 or 1. They conjectured that the same 
holds for k > 2.jP and that this is best possible and Olsen proved this. 
They further conjectured that the number, s, of distinct residues of the 
form ai + aj, 1 :s i < j :s k, is at least min{p,2k - 3}. Partial results 
have been obtained by Mansfield, by R0dseth and by Freiman, Low & 
Pitman. Dias da Silva & Ramidoune gave a complete proof of the Erdös
Reilbronn conjecture, and in fact proved that if Ah denotes the set of 
all sums of h distinct elements of A, A ~Z /p Z, lAI = k, then IAhl ~ 
min{p, hk - h2 + 1}. Nathanson simplifies their proof and, with Ruzsa, 
shows that if A, B ~Z /p Z, lAI = k > l = IBI, then I{a + b : a E A, bE 
B,a#b}1 ~min{p,k+l-2}. 
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C16 Nonaveraging sets. Nondividing sets. 

A nonaveraging set A of integers ° ::; al < a2 < ... < an ::; X was 
defined by Erdös & Straus by the property that no ai shall be the arithmetic 
mean of any subset of A with more than one element. Denote by f(x) the 
maximum number of elements in such a set, and by g(x) the maximum 
number of elements in a subset B of the integers [0, xl such that no two 
distinct subsets of B have the same arithmetic mean, and by h(x) the 
corresponding maximum where the subsets of B have different cardinality. 
Erdös & Straus and Abbott showed (by using Szemeredi's ElO result) that 

1 2 
10 log x + 0(1) <logf(x) < 310gx+0(1) 

1 
2"logx - 1< g(x) < log x + O(1nlnx) 

Vlnx -1 + O(ljVlnx) < logh(x) < 210glnx + 0(1) 
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and conjecture that f(x) = exp(cVlnx) = o(x') and that h(x) = (1 + 
o( 1)) log x. [log x = (In x) / (In 2) is the logarithm to base 2.] Since then 
Abbott has improved the constant 110 to i and Bosznay to i and Erdös & 
Sarközy have lowered the upper bound on log f(x) to ~(Iogx + log lnx) + 
0(1). 

Erdös originally asked for the maximum number, k(x), of integers in 
[0, x] so that no one divides the sum of any others. Such nondividing 
sets are obviously nonaveraging, so k(x) ::; f(x). Straus showed that 
k(x) 2 max{f(x/ f(x)), f( ..jX)}. 

Abbott has shown that if l(n) is the largest m such that every set of n 
integers contains a nonaveraging subset of size m, then l(n) > n 1/ 13-'. 

Compare C14-16 with ElO-14. 
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C17 The minimum overlap problem. 

Let {ai} be an arbitrary set of n distinct integers, 1 ::; ai ::; 2n, and {b j } 

be the complementary set 1 ::; bj ::; 2n, with bj i= ai. M k is the number 
of solutions of ai - bj = k (-2n < k < 2n) and M = minmaxk M k , 

where the minimum is taken over all sequences {ai}. Erdös proved that 
M > n/4; Scherk improved this to M > (1 - 2- 1/ 2 )n and Swierczkowski 
to M > (4 - yI6)n/5. Leo Moser obtained the furt her improvements M > 
V2(n -1)/4 and M > V4 - v'I5(n -1). In the other direction, Motzkin, 
Ralston & Selfridge obtained examples to show that M < 2n/5, contrary to 
Erdös's conjecture that M = ~n. Is there a number c such that M '" cn? 

Leo Moser asks the corresponding quest ion where the cardinality of {ai} 
is not n, but k, where k = lanJ for some real a, 0< a < 1. 
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A closely related problem is attributed to J. Czipszer: Let Ak = {al + k, 
a2 + k, ... ,an + k} where al < a2 < ... < an are arbitrary integers 
and k 2: O. Let Mk be the number of elements of Ak not in A - 0 and 
M = minAo maxo<k:Sn Mk. Czipszer proved that n/2 ::; M ::; 2n/3 and 
conjectured that M = 2n/3. Katz & Schnitzer showed that M > O.6n for 
n 2: 26. Moser & Murdeshwar considered the continuous analog. 

P. Erdös, Some remarks on number theory (Hebrew, English summary), Riveon 
Lematematika, 9(1955) 45-48; MR 17, 460. 
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T. S. Motzkin, K. E. Ralston & J. L. Selfridge, Minimum overlappings under 
translation, Bull. Amer. Math. Soc., 62(1956) 558. 

S. Swierczkowski, On the intersection of a linear set with the translation of its 
complement, Colloq. Math., 5(1958) 185-197; MR 21 #1955. 

CI8 The n queens problem. 

What is the minimum number of Queens which can be placed on an n x n 
chessboard so that every square is either occupied or attacked by a Queen? 
Gerge noted that, in graph theory language, this is the same as finding the 
minimum externally stable set for a graph on 64 vertices with two vertices 
joined just if they are on the same rank, file or diagonal. In his notation 
ß = 5 for Queens (Figure 7 a), 8 for Bishops (Figure 7b) and 12 for Knights 
(Figure 7 c). 
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Figure 7. Minimum Covers of the Chessboard 
by Queens, Bishops and Knights. 
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Although there is no condition that a piece may not guard another 
piece, this condition is satisfied by the Queens and Bishops, but not by the 
Knights. Since in Chess a piece does not attack the square that it stands 
on, there are in fact two sets of problems. For example, Victor Meally not es 
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that, if queens are allowed to guard one another, 3 queens (at a6, c2, e4) 
suffice on a 6 x 6 board, and 4 on a 7 x 7 board. 

For the Queens, Kraitchik gave the following table for an n x n board. 

n 
number of Queens 

5 6 7 8 9 10 11 12 13 14 15 16 17 
3455555678999 

Corresponding configurations for n = 5,6, 11 are shown in Figure 8. 
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Figure 8. Queens Covering n x n Boards for n = 5, 6 and 11. 

If we try to partition the numbers from 1 to 2n into n pairs ai, bi so 
that the 2n numbers ai ± bi fall one in each residue dass modulo 2n, then 
it is found to be impossible. Less restrictively, Shen & Shen asked that the 
2n numbers ai ± bi be distinct. They gave examples for n = 3: 1, 5; 2, 3; 
4, 6; for n = 6: 1, 10; 2, 6; 3, 9; 4, 11; 5, 8; 7, 12; and n = 8: 1, 10; 2, 14; 
3, 16; 4, 11; 5, 9; 6, 12; 7, 15; 8, 13; and Selfridge showed that there was 
always a solution for n ;::: 3. How many solutions are there for each n? 

If the condition bi = i (1 ::; i ::; n) is added, we have the reflecting 
Queens problem: place n queens on an n X n chessboard so that no two 
are on the same rank, file or diagonal, where, on a diagonal, we indude 
reflexions in a mirror in the centre of the zero column (Fig. 9). 
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Figure 9. A Solution of the Reflecting Queens Problem. 
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We can again ask for the number of solutions for each n, both in the case 
where we distinguish between solutions obtained by rotation and reflexion 
and where we do not. 
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C19 Is a weakly independent sequence the finite 
union of strongly independent ones? 

Selfridge calls a set of positive integers al < a2 < ... < ak independent 
if l: Ciai = 0 (where the Ci are integers, not all 0) implies that at least one 
of the Ci is < -1. By using the pigeonhole principle it is easy to show that 
if k positive integers are independent, then al is at least 2k - 1. He offers 
$10.00 for an answer to the question: is the set of kindependent integers 
ai = 2k - 2k - i (1 ::; i ::; k) the only set with largest member less than 2k ? 
It is the only such set with al = 2k - 1. 
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Call a( n infinite) sequence {ai} of positive integers weakly indepen
dent if any relation L Eiai with Ei = 0 or ±1 and Ei = 0 except finitely 
often, implies Ei = 0 for all i, and call it strongly independent if the 
same is true with Ei = 0, ±1, or ±2. Richard Hall asks if every weakly 
independent sequence is a finite union of strongly independent sequences. 

J. L. Selfridge, Problem 123, Pi Mu Epsilon J., 3(1959-64) 118, 413-414. 

C20 Sums of squares. 

Paul Tunin asks for a characterization of those positive integers n which 
can be expressed as the sum of four pairwise coprime squares, Le., n = 
x~ + x~ + x~ + x~ with Xi 1- Xj (1 ::; i < j ::; 4). Leech notes that at 
most one of the Xi is even, so that n == 3, 4 or 7 mod 8. Similarly, numbers 
n == 2 mod 3 are not so representable. 

Turan also conjectured that all positive integers can be represented as 
the sum of at most five pairwise coprime squares, but Ml}kowski (see refer
ence at B5) notes that numbers 4k (24l+15) with k 2': 2 can't be represented 
in this way. There are arbitrarily large integers that are not representable 
as the surn of exactly five coprime squares, since 3n = x~ + ... + xg 
implies that 3 divides two of the Xi. In fact, the product of two distinct 
primes of shape 24k + 7 cannot be the sum of fewer than ten pairwise 
coprime squares, and Leech asks if this is the record. 

Apart from 256 examples, the largest of which is 1167, every number 
can be expressed as the sum of at most five composite numbers. 

Chowla conjectures that every positive integer is the sum of at most 
four elements of the set {(P2 - 1)/24} where p is prime and p 2': 5. The 
smallest number which requires four such summands is 33. 

Compare these problems with some earlier results of Wright, who 
showed, for example, that if Al, ... , A4 were given real numbers with 
sum 1, then every n with a sufficiently large odd factor is expressible as 
n = m~ + ... + m~ with Im~ - Ainl = o(n). He has similar results for five 
or more squares, and for three squares (provided, of course, that n is not 
of the form 4k (8l + 7) in this last case). 

Bohman, Fröberg & Riesel showed that there are just 31 numbers which 
can't be expressed as the sum of distinct squares, and that all numbers 
greater than 188 can be expressed as the sum of at most five distinct 
squares. Only two numbers, 124 and 188, require six distinct squares. The 
results are implicit in Gordon Pall's Theorem 3, and in Sprague's papers, 
which give the more general result for any powers. If an exact number of 
squares is required, then Halter-Koch showed that every integer> 412 and 
not divisible by 8 is a sum of four distinct nonzero squares, and that every 
odd integer > 157 is so representable. He also showed that every integer 
> 245 is the sum of five distinct nonzero squares, every integer> 333 is the 



C20. Sums of squares. 137 

sum of six such, every integer > 390 the sum of seven such, every integer 
> 462 the sum of eight such, and so on, up to all > 1036 being the sum 
of twelve such squares. Bateman, Hildebrand & Purdy have produced a 
sequel to Halter-Koch's paper. 

Denote by 8 n the largest integer that is not the sum of distinct nth pow
ers of positive integers. Sprague showed that 82 = 128; Graham reported 
that 83 = 12758 and Lin used his method to obtain 84 = 5134240. Cam 
Patterson used his sieve, and a result of Richert, to obtain 85 = 6789877l. 

Stefan Porubsky used a result of Cassels to give an affirmative answer to 
a question of R. E. Dressler: for each positive integer k, is every sufficiently 
large positive integer the sum of distinct k-th powers of primes? 

One can also ask for every number to be expressible as the sum of as 
few as possible polygonal numbers of various kinds. For example there is 
Gauß's famous 1796-07-10 diary entry: 

EYPHKAl num = 1::::.+1::::.+1::::., 

Le., every number is expressible as the sum ofthree triangular numbers. For 
hexagonal numbers r(2r - 1), the answer is the same if you allow hexagonal 
numbers of negative rank, r(2r + 1), but if these are excluded, then 11 and 
26 require six hexagonal numbers of positive rank to represent them. 1s it 
possible that every sufficiently large number is expressible as the sum of 
three such numbers? Equivalently, is every sufficiently large number 8n + 3 
expressible as the sum of three squares of numbers of shape 4r - 1, with r 
positive? The corresponding question for pentagonal numbers ~r(3r - 1) 
is to ask if every sufficiently large number of shape 24n + 3 is expressible 
as the sum of three squares of numbers of shape 6r - I? 
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D. Diophantine Equations 

"A subject which can be described briefly by saying that a great 
part of it is concerned with the discussion of the rational or inte
ger solutions of a polynomial equation f(Xl, X2, ... , xn ) = 0, with 
integer coefficients. It is weH known that for many centuries, no 
other topic has engaged the attention of so many mathematicians, 
both professional and amateur, or has resulted in so many published 
papers." 

This quotation from the preface of Mordell's book, Diophantine Equa
tions, Academic Press, London, 1969, indicates that in this section we 
shall have to be even more eclectic than elsewhere. If you're interested in 
the subject, consult Mordell's book, which is a thoroughgoing but read
able account of what is known, together with a great number of unsolved 
problems. There are well-developed theories of rational points on algebra
ic curves, so we mainly confine ourselves to higher dimensions, for which 
standard methods have not yet been developed. 

Dl Sums of like powers. Euler's conjecture. 

"It has seemed to many Geometers that this theorem [Fermat's 
Last Theorem] may be generalized. Just as there do not exist two 
cubes whose sum or difference is a cube, it is certain that it is im
possible to exhibit three biquadrates whose sum is abiquadrate, but 
that at least four biquadrates are needed if their sum is to be a bi
quadrate, although no one has been able up to the present to assign 
four such biquadrates. In the same manner it would seem to be im
possible to exhibit four fifth powers whose sum is a fifth power, and 
similarly for higher powers." 

No advance was made on Euler's statement until 1911 when R. Norrie 
assigned four such biquadrates: 

Fifty-five years later Lander & Parkin gave a counter-example to Euler's 
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more general conjecture: 

It's now weH known, since his discovery hit the national newspapers, 
that Noam Elkies has disproved Euler's conjecture for fourth powers. The 
infinite family of solutions, of which the first member is 

26824404 + 153656394 + 187967604 = 206156734 , 

comes from an elliptic curve given by u = -5/8 in the parametric solution 
of x4 - y4 = z4 + t 2 given by Dem'janenko. The smaHest solution, 

958004 + 2175194 + 4145604 = 4224814 , 

corresponding to u = -9/20, was subsequently found by Roger Frye. There 
are infinitely many values of u which give curves of positive rank, and 
further families of solutions. 

The solution of Jan Kubicek, making the sum of three cubes a cube, 
coincides with that of F. Vieta (see Dickson's History [A17], Vol. 2, 
pp. 550-551). 

Simcha Brudno asks the following questions. Is there a parametric 
solution to a5 + b5 + e5 + d5 = e5? [The above solution is the only one with 
e ::; 765.] Is there a parametric solution to a4 + b4 + e4 + d4 = e4? Are 
there counterexamples to Euler's conjecture with powers higher than the 
fifth? Is there a solution of a6 + b6 + e6 + ~ + e6 = f6? Although there 
are solutions of a~ + ... + a~_l = bS for s = 4 and 5, there is no known 
solution, even of ai + ... + a~ = bS , for n 2:: 6. 

Parametric solutions are known for equal sums of equal numbers of like 
powers, 

m m 

Lai = 2:)i 
i=l i=l 

with ai > 0, bi > 0, for 2 ::; s ::; 4 and m = 2 and for s = 5, 6 and m = 3. 
Can a solution be found for s = 7 and m = 4? For s = 5, m = 2, it is not 
known if there is any nontrivial solution of a5 + b5 = e5 + d5 • Dick Lehmer 
once thought that there might be a solution with a sum of about 25 decimal 
digits, but a search by Blair Kelly III yielded no nontrivial solution with 
sum ::; 1.02 x 1026 . 

The "Hardy-Ramanujan number" 1729 = 13 + 123 = 93 + 103 was first 
found by Bernard Frenicle de Bessy in 1657; Leech, in 1957, found 

87539319 = 1673 + 4363 = 2283 + 4233 = 2553 + 4143 

and Rosenstiel, Dardis & Rosenstiel recently found 6963472309248 = 

24213 + 190833 = 54363 + 189483 = 102003 + 180723 = 133223 + 155303 . 
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Theorem 412 in Hardy & Wright shows that the number of such sums can 
be made arbitrarily large, but the least example is not known for five or 
more equal sums. If negative integers are allowed, then Randall Rathbun 
supplies the examples: 

6017193 = 1663 + 1133 = 1803 + 573 = 1853 - (68)3 
= 2093 - (146)3 = 2463 - (207)3 

1412774811 = 9633 + 8043 = 11343 - (357)3 = 11553 - (504? 
= 12463 - (805)3 = 21153 - (2004? = 47463 - (4725)3 

11302198488 = 19263 + 16083 = 19393 + 15893 = 22683 - (714)3 = 23103 - (1008)3 
= 24923 - (1610)3 = 42303 - (4008)3 = 94923 - (9450)3 

Mordell and Mahler proved that the number of solutions of n = 
x3 + y3 can be > e(1n n)O! and Silverman has improved their value of a: 
from ~ to land has shown that, if it is required that the pairs of cubes 
are to be mutually prime, then there is a constant c such that the number 
of such solutions is < er(n), where r(n) is the rank of the elliptic curve 
x3 + y3 = n. It is much harder to find these solutions. The largest number 
of representations so far found is three, by P. Vojta in 1983: 

15170835645 = 5173 + 24683 = 7093 + 24563 = 17333 + 21523 

but present-day insight and computing power may so on beat this. If neg
ative integers are allowed, Randall Rathbun gives the cubefree example 

16776487 = 2203 + 1833 = 2553 + 583 = 2563 + (_9)3 = 2923 + (-201)3 

The number 1729 is also the third Carmichael number (see A13) and 
Pomerance has observed that the second Carmichael number, 1105, is ex
pressible as the sum oftwo squares in more ways than any smaller number. 
Granville invites the reader to make a corresponding statement about the 
first Carmichael number, 561. 

Euler knew that 635318657 = 1334 + 1344 = 594 + 1584 , and Leech 
showed this to be the smallest example. No one knows of three such equal 
sums. 

A method is known for generating parametric solutions of a4 + b4 = 
e4 + d4 which will generate all published solutions from the trivial one 
(>., 1, A, 1); it will only produce solutions of degree 6n + 1. Here, in answer 
to a question of Brudno, 6n+ 1 need not be prime. Although degree 25 does 
not appear, 49 does. More recently, Ajai Choudhry has found a parametric 
solution of degree 25. 

Swinnerton-Dyer has a second method for generating new solutions from 
old and can show that the two methods, together with the symmetries, gen
erate all nonsingular parametric solutions, Le., all solutions which corre
spond to points on curves with no singular points. [A point on a curve with 
homogeneous equation F(x, y, z) = 0 is singular just if ~~ = ~~ = ~~ = 0 
there.] Moreover, the process is constructive in the sense that he can give 
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a finite procedure for finding all nonsingular solutions of given degree. All 
nonsingular solutions have odd degree, and all sufficiently large odd degrees 
do occur. Unfortunately, singular solutions do exist. Swinnerton-Dyer has 
a process for generating them, but has no reason to believe that it gives 
them all. The problem of describing them all needs completely new ideas. 
Some of the singular solutions have even degree and he conjectures (and 
could probably prove) that all sufficiently large even degrees occur in this 
way. 

In the same sense, Andrew Bremner can find "all" parametric solutions 
of a6 + b6 + c6 = d!' + e6 + f6 which also satisfy the equations 

a2 + ad - d2 = f2 + fc - c2 

b2 + be - e2 = d2 + da - a2 

c2 + cf - p = e2 + eb - b2 

(this is not such a restriction as might at first appear). Many solutions of 
a6 + b6 + c6 = d!' + e6 + f6 also satisfy a2 + b2 + c2 = ~ + e2 + P and all 
known simultaneous solutions (with appropriately chosen signs) of these 
two equations also satisfy the previous three equations, e.g., the smallest 
solution, found by Subba-Rao, (a, b, c, d, e, 1) = (3,19,22, -23, 10, -15). Is 
there a counter-example? Peter Montgomery has listed 18 equal sums of 
three sixth powers where the corresponding sums of squares are not equal. 
The least is 

Bremner can also find "all" parametric solutions of a5 + b5 + c5 

d5 + e5 + f5 which also satisfy a + b + c = d + e + fand a - b = d - e. 
Bob Scher calls a sum E~l af = 0 (where pis prime) "perfect" if, for 

any ai, there is also a unique a~ such that ai+a~ == 0 mod p. If ai == 0 mod p, 
then a~ = ai. He shows that if p = 3 and m < 9 or if p = 5 and m < 7, 
then every such sum is perfect. 

There has been some interest in the simultaneous equations 

an + bn + cn = ~ + en + fn 
anbncn = dnen fn 

For n = 2 the problem goes back at least to Bini, with partial solutions 
by Dubouis and Mathieu; a neat general solution has recently been given 
by John B. Kelly. Stephane Vandemergel has found 62 solutions for n = 3 
and three solutions for n = 4: (29,66,124;22,93,116), (54,61,196;28,122,189) 
and (19,217,657;9,511,589). He notes that if rn + sn = un + vn, then 
(ru, su, v2 ; rv, sv, u2 ) is a solution, which shows that there are infinitely 
many solutions for n ~ 4. Most of his solutions are not of this form. 

There is a considerable history (see Dickson [A17], II, Ch. 24) of the 
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Tarry-Escott problem, and a book by Gloden on (systems of) multigrade 
equations: 

I I 

L n{ = L m{ (j = 1, ... , k) 
i=l i=l 

A spectacular example, with k = 9, l = 10, is due to Letac, with (ni; mi) = 

±12, ±11881, ±20231, ±20885, ±23738; ±436, ±11857, ±20449, ±20667, ±23750. 

Smyth has shown that this is a member of an infinite family of independent 
solutions. 
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D2 The Fermat problem. 

It seems that Fermat's Last Theorem, that the equation 

xP +yP = zP 

is impossible in positive integers for an odd prime p, is at last indeed a 
theorem. But the proof is long and, at the time of writing, leans on the 
work of others. Indeed, as I write, a hole is reported to have been found, 
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to repair which may be possible, but "may take one or two years." Ribet 
had shown that the theorem follows from the Taniyama-Weil conjectures 
on elliptic curves. For as much of the proof as our margin will hold, see 
B19. It raises philosophical problems, such as: are we running out of 
'comprehensible' proofs and must we teach computers to check our results 
for us? 

Kummer proved the theorem for aH regular primes, where a prime p is 
regular if it doesn't divide hp , the number of equivalence classes of ideals 
in the cyclotomic field Q( (p). He also showed that a prime was regular just 
if it did not divide the numerators of the Bernoulli numbers B2 , B4 , •.• , 

Bp - 3 , where 

B = (_1)k-1 2(2k)! 1'(2k) 
2k (27l')2k'" 

(((2k) = 2::=1 n-2k and see A17). Of the 78497 primes less than 106, 
47627 are regular, agreeing weH with their conjectured density, e- 1/ 2 • How
ever, it has not even been proved that there are infinitely many. On the 
other hand, Jensen has proved that there are infinitely many irregular 
primes. The prime p = 16843 divides Bp - 3 and Richard McIntosh, as weH 
as Buhler, Crandall, ErnvaH & Metsänkylä, observes that this is also true 
for p = 2124679. 

Some of J. M. Gandhi's subsidiary problems, mentioned in the first 
edition, are covered by Wiles's method (if it holds up under scrutiny), 
which shows the unsolvability of 

xp + yp + 'YzP = 0 

if p 2:: 11 and 'Y is apower of one of the primes 3,5,7, 11, 13, 17, 19,23, 
29,53,59, .... 

For what integers c are there integer solutions of x4 + y4 = cz4 with 
x ...L y andz > I? Leech gives a method for finding non-trivial solutions 
for anY z = a4 + b4 : the smallest he has found is 254 + 1494 = 5906.174 • 

Bremner & Morton show that 5906 is the least integer that is the sum of 
two rational fourth powers, but not the sum of two integer fourth powers. 

Prove that xn + yn = n!zn has no integer solutions with n > 2. Erdös 
& Obla.th showed that xP ± yP = n! has none with p > 2, and Erdös states 
that x4 + y4 = n! has no solutions with x ...L y. Indeed, even without this 
last condition, Leech notes that for n > 3 there's a prime == 3 mod 4 in the 
interval [n+ 1, 2n] and hence a simple (Le. not repeated) such prime divisor 
of n! for n > 6, so n! is not even the sum of two squares for n > 6 (apart 
from n = 0, 1, 2, the only solution is 6! = 242 + 122 ). [Compare D25.] 

Granville's paper, in which the reviewer feIt "a new powerful wave", had 
already related the Fermat problem to numerous other conjectures, includ
ing the ABC conjecture (B19) and Erdös's powerful numbers conjecture 
(B16). 
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D3 Figurate numbers. 

Mordell, on p. 259 of his book, asks if the only integer solutions of 

6y2 = (x+ 1)(x2 -x+6) 

are given by x = -1, 0, 2, 7, 15 and 74? By Theorem 1 of Mordell's 
Chapter 27 there are only finitely many. The equation arises from 

Andrew Bremner gave the additional solution (x, y) = (767,8672) and 
showed that that is all , but the result was already given by Ljunggren 
in 1971. 

Similarly, Martin Gardner took the figurate numbers: triangle, square, 
tetrahedron and square pyramid; and equated them in pairs. Of the six 
resulting problems, he noted that they were all solved except "triangle = 
square pyramid" , which leads to the equation 

3(2y + I? = 8x3 + 12x2 + 4x + 3. 

The number of solutions is again finite. Are they all given by x = -1, 0, 
1,5,6 and 85? Schinzel sends Avanesov's affirmative answer, rediscovered 
by U chiyama. 

The "triangle = tetrahedron" problem is a special case of a more general 
question about equality of binomial coefficients (see B31) - the only non
trivial examples of (~) = (';) are (m, n) = (10,16), (22,56) and (36,120). 
Are there nontrivial examples of (~) = (7) other than (1O,21)? 

The case "square pyramid = square" is Lucas's problem. Is x = 24, 
y = 70 the only nontrivial solution of the diophantine equation 

y2 = x(x + 1)(2x + 1)/6? 

This was solved affirmatively by Watson, using elliptic functions, and by 
Ljunggren, using a Pell equation in a quadratic field. Mordell asked if there 
was an elementary proof, and affirmative answers have been given by Ma, 
by Xu & Cao, by Anglin and by Pinter. 

The same equation in disguise is to ask if (48,140) is the unique nontriv
ial solution to the case "square = tetrahedron" , since the previous equation 
may be written 

(2y)2 = 2x(2x + 1)(2x + 2)/6, 

though, as Peter Montgomery notes, this doesn't eliminate the possibility 
of an odd square. A more modern treatment is to put 12x = X - 6, 
72y = Y and note that y2 = X3 - 36X is curve 576H2 in John Cremona's 



148 D. Diophantine Equations 

tables. The point (12,36) (which gives an odd square) serves as a generator. 
There's an infinity of rational solutions, but the only nontrivial integer 
solution to the original problem is given by the point (294,5040). 

More general than asking for the sum of the first n squares to be square, 
we can ask for the sum of any n consecutive squares to be square. If S is 
the set of n for which this is possible, then it is known that S is infinite, but 
has density zero, and that if n is a nonsquare member of S, then there are 
infinitely many solutions for such an n. If N(x) is the number of members 
of S less than x, then the best that seems to be known is that 

cVx< N(x) = 0 (l:x)' 

The elements of S, 1 < n < 73, and the corresponding least values of a for 
which the sum of n squares starting with a is square, are 

n 2 
a 3 

11 23 
18 7 

24 26 33 47 49 
1 25 7 539 25 

50 59 
7 22 

More generally still, one can ask that the sums of the squares of the 
members of an arbitrary arithmetic progression should be square. K. R. S. 
Sastry notes that this can occur if the number of terms in the progression 
is square. 

In answer to the question: which triangular numbers are the prod
uct of three consecutive integers, Tzanakis & de Weger gave the (only) 
answers 6, 120, 210, 990, 185136 and 258474216. Unfortunately, Mohan
ty's elementary proof of the same result is erroneous. 

Other examples of elliptic curves were treated by Bremner & Tzanakis 
who showed that there are just 26 integer points on y2 = x3 - 7x + 10 and 
they also examined y2 = x3 - bx + c for (b, c) = (172,505), (172,820) and 
(112,2320). 

There are infinitely many solutions of m - m = ck for k = 3. Are 
there any for k = 4? And is (a, b, c) = (18,12,6) an isolated example for 
k = 5? 
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D4 Sums of l kth powers. 

Let rk,l(n) be the number of solutions of n = L!=l xf in positive integers 
Xi. Hardy & Littlewood's Hypothesis K is that E > 0 implies that Tk,k(n) = 
O(n€). This is well-known for k = 2; in fact, for mfficiently large n, 

r2,2(n) < n(l + E) In 2/ In In n 

and this does not hold if In 2 is replaced by anything smaller. Mahler 
disproved the hypothesis for k = 3 by showing that T3,3 > cln1/ 12 for 
infinitely many n. 

Erdös thinks it possible that for all n, T3,3 < C2n1/12 but not hing is 
known. Probably Hypothesis K fails for every k ~ 3, but also it's probable 
that L~=l (Tk,k(n))2 < x1+€ for sufficiently large x. 

S. Chowla proved that for k ~ 5, Tk,k(n) -# 0(1) and, with Erdös, that 
for every k ~ 2 and for infinitely many n, 

Tk,k > exp(cklnn/lnlnn). 

Mordell proved that T3,2(n) -# 0(1) and Mahler that T3,2(n) > (In n)1/4 
for infinitely many n. No nontrivial upper bound for T3,2(n) is known. Jean 
Lagrange has shown that limsupT4,2(n) ~ 2 and that limsupT4,3(n) = 00. 

Another tough problem is to estimate Ak,I(X), the number of n ~ X 
which are expressible as the sum of l k-th powers. Landau showed that 

A2,2(X) = (c + o(l))xJ(ln X)1/2, 

Erdös & Mahler proved that if k > 2, then Ak,2 > Ckx2/k, and Hooley that 
Ak,2 > (Ck + o(1))x2/k. It seems certain that if l < k, then Ak,l > Ck,IXI/k 
and that Ak,k > x1- f for every E, but these have not been established. 

It follows from the Chowla-Erdös result that for all k there is an nk 
such that the number of solutions of nk = p3 + q3 + T3 is greater than k. 
No corresponding result is known for more than three summands. 
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D5 Surn of fOUf cubes. 

Is every number the sum of four cubes? This has been proved for all 
numbers except possibly those of the form 9n ± 4. 

More demanding is to ask if every number is the sum of four cubes with 
two ofthem equal. Specifically, is there a solution of 76 = x3+y3+2z3? The 
other numbers less than 1000 which may still be in doubt are 148,183,230, 
356, 418, 428, 445, 482, 491, 580, 671, 788, 931 and 967. A 70-01-20 letter 
from M. LaI to A. M~owski reports J. C. Littlejohn's observations that 
253 = 03+53+2.43, 519 = 03+173+2(-13)3 and 734 = (-520)3+(-700)3+ 
2.6233 . Andrew Bremner teIls me that 923 = 275123+( -27517)3+2.17843. 

Are all numbers which are not of the form 9n ± 4 the sum of three 
cubes? Computer searches have found representations for aIl numbers less 
than 1000, except for 

30 33 42 52 74 75 84 110 114 
156 165 195 290 318 366 390 420 435 
444 452 462 478 501 530 534 564 579 
588 600 606 609 618 627 633 732 735 
758 767 786 789 795 830 834 861 894 
903 906 912 921 933 948 964 969 975 

In a 93-05-25 email message Andrew Bremner tells me that 

75 = 4352030833 + (-435203231)3 + 43811593 

(which gives an imprimitive solution for 600) while Conn & Vaserstein have 
discovered that 

84 = 416396113 + (-41531726)3 + ( -8241191)3. 
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The equation 3 = x3 + y3 + z3 has the solutions (1,1,1) and (4,4, -5). 
Are there any others? 
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D6 An elementary solution of x2 = 2y4 - 1. 

Ljunggren has shown that the only solutions of y2 = 2x4 - 1 in positive 
integers are (1,1) and (239,13) but his proof is difficult. Mordell asks if it is 
possible to find a simple or elementary proof. Whether Steiner & Tzanakis 
have simplified the solution may be a matter of taste; they use the theory 
of linear forms in logarithms of algebraic numbers. 

Ljunggren and others have made considerable investigations into equa
tions of similar type. For references see the first edition. Cohn has consid
ered the equation y2 = Dx4 + 1 for all D :::; 400. This will have rational 
solutions just when there are rational points on the curves y2 = x( x2 - 4D) 
and y2 = X(X2 + 16D), which are nonsingular provided ±D is not square. 
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D7 Sum of consecutive powers made apower. 

Rufus Bowen conjectured that the equation 

has no nontrivial solutions, and Leo Moser showed that there were none 
with m ~ 101000000 and none with n odd. Zhou & Kang raised the bound 
to m ~ 102000000. Van de Lune & te Riele showed that the equation is 
almost never solvable. Note that n f"V m In 2. 

Tijdeman observes that general results on the equation 

do not appear to have any implications for the special equation. 
Erdös proposed the problem to prove that if m, n are integers satisfying 

(K), then (L') and (M') are true, where 

(K) 

(L') 
(M') 

(1 - .l.)n > 1 > (1 __ I_)n 
rn 2 rn-I' 

In + 2n + ... + (m - 2)n < (m _1)n, 
In +2n + ... +mn > (m+ l)n, 

and that (L) and (M) are each true infinitely often, where 

(L) In + 2n + ... + (m _1)n < m n, 

(M) In + 2n + ... + (m - l)n > m n. 

Van de Lune proved that (K) implies (L') and Best & te Riele proved 
that (K) implies (M') and that (M) holds for at most clnx values of m ~ x. 
Van de Lune & te Riele proved that (L) is true for almost all pairs (m, n). 
Best & te Riele computed 33 pairs (m, n) for which (K) and (M) both hold, 
the smallest being 

m= 1121626023352385, n=777451915729368. 
Are there infinitely many such pairs? 
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More recently Pieter Moree, te Riele & Urbanowicz have shown that, 
in the original equation, n must be divisible by the l.c.m. of all integers up 
to 200, and that m is not divisible by any regular prime (see D2), nor by 
any irregular prime< 1000. 
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D8 A pyramidal diophantine equation. 

Wunderlich asks for (a parametric representation of) all solutions of the 
equation x3 + y3 + z3 = X + y + z. Bernstein, S. Chowla, Edgar, Fraenkel, 
Oppenheim, Segal, and Sierpinski have given solutions, some of them para
metric, so there are certainly infinitely many. Eighty-eight of them have 
unknowns less than 13000. Bremner has effectively determined all para
metric solutions. 
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D9 Difference of two powers. 

Except that there remains a finite amount of computation, Tijdeman has 
settled the old conjecture of Catalan, that the only consecutive powers, 
higher than the first, are 23 and 32 . But this finite amount of computa
tion is far beyond computer range and will not be achieved without some 
additional theoretical ideas. Langevin has deduced from Tijdeman's proof 
that if n, n + 1 are powers, then n < exp exp exp exp 730, and Aaltonen & 
Inkeri have shown that xP - yq = 1 and x, y> 2 imply that x, y > 10500 • 

Mignotte has shown that p < 1.21 X 1026 , q < 1.31 X 1018. If p and q are 
prime and q == 3 mod 4, these bounds can be reduced to 2.7 X 1024 and 
1.23 x 1018. There is no solution if min{p, q} = 2 or 3. Glass & others 
have shown this to be true for min{p, q} E {5, 7, 11}. Mignotte shows that 
there are no solutions for p = 19 and that the only possibility for p = 53 is 
q = 4889. 

Bennett has shown that 4 S N S k . 3k implies that 

where Ilxll is the distance from X to the nearest integer. 
Leech asks ifthere are any solutions of lam-bnl < la-bi with m, n ~ 3. 

With equality he notes 153 - 27 1 = 5 - 2 and 1133 - 371 = 13 - 3. Are these 
an? are the shared exponents 3, 7 significant? 

If a1 = 4, a2 = 8, a3 = 9, ... is the sequence of powers higher than the 
first, Chudnowsky claims to have proved that an+1 - an tends to infinity 
with n. Erdös conjectures that an+! - an > c' nC , but says that there is no 
present hope of proof. 



156 D. Diophantine Equations 

Erdös asks if there are infinitely many numbers not of the form x k - yl , 

k> 1, 1 > l. 
earl Rudnick denotes by N(r) the number of positive solutions of 

x4 - y4 = r, and asks if N(r) is bounded. Hansraj Gupta observes that 
Hardy & Wright (p. 201) give Swinnerton-Dyer's version of Euler's para
metric solution of x4 - y4 = u4 - v4 , which establishes that N (r) is 0, 1 or 
2 infinitely often. For example 1334 - 594 = 1584 -1344 = 300783360. For 
an example with N(r) = 3, Zajta gives 

4011684 - 172284 = 4151374 - 2482894 = 4212964 - 2735884 . 

There can hardly be any doubt that N(r) is bounded. 
Hugh Edgar asks how many solutions (m, n) does pm - qn = 2h have, for 

primes p and q and h an integer? Examples are 32 - 23 = 20; 33 - 52 = 21; 

53 - 112 = 22; 52 - 32 = 24 ; 34 - 72 = 25; are there others? Andrzej 
Schinzel writes that work of Gelfond and of Rumsey & Posner implies 
that the equation has only finitely many solutions. Reese Scott goes a fair 
way towards settling the question. He observes that the finiteness of the 
number of solutions for given (p, q, c( = 2h )) follows from a result of Pillai, 
and proves that this number is often at most one, with a small number of 
specifically listed exceptional cases, where it is two or possibly three. 
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DIO Exponential diophantine equations. 

Brenner & Foster pose the following general problem. Let {Pi} be a 
finite set of primes and € = ±1. When can the exponential diophantine 
equation 2>iP~' = 0 be solved by elementary methods (e.g., by modular 
arithmetic)? More exactly, given Pi,€i, what criteria determine whether 
there exists a modulus M such that the given equation is equivalent to the 
congruence L €iP~' == 0 mod M? They solve many particular cases, mostly 
where the Pi are four in number and less than 108. In a few cases elemen
tary methods avail, even if two of the primes are equal, but in general they 
do not. In fact, neither 3a = 1 + 2b + 2C nor 2a + 3b = 2C + 3d can be 
reduced to a single congruence. Tijdeman notes that another approach to 
these purely exponential diophantine equations (which playa role in group 
theory) is by Baker's method (compare F23). This makes it possible to 
solve these last two equations. 

Hugh Edgar asks if there is a solution, other than 1 + 3 + 32 + 33 + 34 = 
112 , of the equation 1 + q + q2 + ... + qX-l = pY with p, q odd primes and 
x ~ 5, Y ~ 2. An important breakthrough in this area is the paper of Reese 
Scott (see D9). 
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DII Egyptian fractions. 

The Rhind papyrus is amongst the oldest written mathematics that has 
come down to us; it concerns the representation of rational numbers as the 
sum of unit fractions, 

m 1 1 1 -=-+-+ ... +
n Xl X2 Xk 

This has suggested numerous problems, many of which are unsolved, 
and continues to suggest new problems, so the interest in Egyptian frac
tions is as great as it has ever been. Our bibliography shows only a fraction 
of what has been written. Bleicher has given a careful survey of the subjec
t and draws attention to the various algorithms that have been proposed 
for constructing representations of the given type: the Fibonacci-Sylvester 
algorithm, Erdös's algorithm, Golomb's algorithm and two of his own, the 
Farey series algorithm and the continued fraction algorithm. See also the 
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extensive Section 4 of the collection of problems by Erdös & Graham men
tioned at the beginning of this volume, and the bibliography obtainable 
from Paul Campbell. 

Erdös & Straus conjectured that the equation 

4 1 1 1 
-=-+-+n x y z 

could be solved in positive integers for all n > 1. There is a good account 
of the problem in Mordell's book, where it is shown that the conjecture is 
true, except possibly in cases where n is congruent to 12,112,132,172,192 
or 232 mod 840. Several have worked on the problem, including Bernstein, 
Oblath, Rosati, Shapiro, Straus, Yamamoto, and Nicola Franceschine who 
has verified the conjecture for n < 108 . Schinzel has observed that one can 
express 

4 1 1 1 
at + b = x(t) + y(t) + z(t) 

with x(t), y(t), z(t) integer polynomials in t with positive leading coeffi
cients and a ..L b, only if b is not a quadratic residue of a. 

Sierpinski made the corresponding conjecture concerning 

5 1 1 1 
- = - + - +-. 
n x y z 

Palama confirmed it for all n :::; 922321 and Stewart has extended this to 
n:::; 1057438801 and for all n not of the form 278460k + 1. 

Schinzel relaxed the condition that the integers x, y, z should be pos
itive, replaced the numerators 4 and 5 by a general m and required the 
truth only for n > nm . That nm may be greater than m is exemplified 
by n18 = 23. The conjecture has been established for successively larger 
Values of m by Schinzel, Sierpinski, Sedlacek, Palama and Stewart & Webb, 
who prove it for m < 36. Breusch and Stewart independently showed that 
if m/n > 0 and n is odd, then m/n is the sum of a finite number of re
ciprocals of odd integers. See also Graham's papers. Vaughan has shown 
that if Em(N) is the number of n :::; N for which m/n = I/x + l/y + l/z 
has no solution, then 

where c depends only on m. Hofmeister & Stoll have shown that if Fm(N) 
is the number of n :::; N for which m/n = I/x + l/y has no solution, then 

where <j>(m) is Euler's totient function (B36). 
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Hofmeister notes that this implies that Am (N) / N -+ 1 as N -+ 00 where 
Am(N) is the number of b, 1 ::; b ::; N for which there is a representation 
m/b = l/n1 + l/n2, so that almost alllattice points on the line y = m, 
x 2: 1 have such a representation. Paradoxically, Mittelbach lets B(N) be 
the number of lattice points (a, b), 1 ::; a ::; b ::; N for which there is a 
representation alb = I/n1 + I/n2 and proves that B(N)I ~N(N + 1) -+ O. 
I.e., almost no lattice points in the triangle (1,1), (I,N), (N,N) have a 
representation for large N. 

In contrast to the result of Breusch and Stewart, the following problem, 
asked by Stein, Selfridge, Graham and others, has not been solved. If 
mln, a rational number (n odd) , is expressed as 2: I/Xi, where the Xi 
are successively chosen to be the least possible odd integers which leave a 
nonnegative remainder, is the sum always finite? For example, 

2 1 1 1 1 
"7 = "5 + 13 + 115 + 10465 

John Leech, in a 77-03-14 letter, asks what is known about sets of 
unequal odd integers whose reciprocals add to 1, such as 

11111111111 
"3 + "5 + "7 + 9 + 15 + 21 + 27 + 35 + 63 + 105 + 135 = 1 

He says that you need at least nine in the set, while on the other hand 
the largest denominator must be at least 105. Notice the connexion with 
Sierpinski's pseudoperfect numbers (B2). 

945 = 315 + 189 + 135 + 105 + 63 + 45 + 35 + 27 + 15 + 9 + 7 

It is known that if n is odd, then mln is always expressible as a sum of 
distinct odd unit fractions. 

Tenenbaum & Yokota show that mln can be expressed as the sum of r 
unit fractions with denominators ::; 4n(ln n)210g2 n where r ::; (1 + €) 
In n/ log2 n but that 1 + € cannot be replaced by 1 - €. 

Victor Meally ordered the rationals alb, a J.. b, between 0 and 1 by 
. f b df·11121123 d dh 2 slze 0 a + an 0 a. "2' '3' 4' '3' "5' "6' "5' 4' ... an note t at '3' 
g and 181 are the earliest members of the sequence that need 2, 3 and 4 
unitary fractions to represent them. Which are the earliest that need 5? 
6? 7? Stephane Vandemergel, in a 93-04-28 letter, states that ~~ requires 
5 unitary fractions, and ~~ needs 6. 

Barbeau expressed 1 as the sum ofthe reciprocals of 101 distinct positive 
integers, no one dividing another. Erdös & Graham showed that if n is 
squarefree, then mln can always be written as a finite sum of reciprocals of 
squarefree integers each having exactly w distinct prime factors, for w 2 3. 
There are many cases in which w can be taken as 2. For m = n = 1 at 
least 38 integers are required: Allan Johnson manages it with w = 2 and 
the 48 numbers 
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6 21 34 46 58 77 87 115 155 215 287 391 
10 22 35 51 62 82 91 119 187 221 299 689 
14 26 38 55 65 85 93 123 203 247 319 731 
15 33 39 57 69 86 95 133 209 265 323 901 

Is this the smallest possible set? Richard Stong also solved this problem, 
but used a larger set. 

Erdös, in a 72-01-14 letter, sets -21 + -31 + ... + 1 = !!b' where b = 
nIl 5 [2,3, ... , n], the l.c.m. of 2,3, ... , n. He observes that "2 + "3 = "6 and 

! + ~ + i = g are such that a ± 1 == 0 mod band asks if this occurs again: 
he conjectures not. Is a 1. b infinitely often? 

If E!=ll/Xi = 1 with Xl < X2 < x3 < ... distinct positive integers 
Erdös & Graham ask what is m(t), the min max Xi, where the minimum is 
taken over all sets {xd. For example, m(3) = 6, m(4) = 12, m(12) = 120. 
Is m(t) < ct for some constant c? In this notation, is it possible to have 
Xi+! - Xi ~ 2 for all i? Erdös conjectures that it is not and offers $10.00 
for a solution. 

Erdös & Graham ask if it is true that any coloring of the integers with 
c colors gives a monochromatic solution of 

"" ..!.. = 1, Xl < X2 < . . . (finite sum). 
L...J Xi 

This is open even for c = 2. If the answer is affirmative, let f(c) be the 
smallest integer for which every c-coloring of the integers 1 ~ t ~ f(c) 
contains a monochromatic solution. Determine or estimate f(c). 

Erdös also asks that if 

111 
- + - + ... + - = 1, Xl < X2 < ... < Xk 
Xl X2 Xk 

and k is fixed, what is max Xl ? If k varies, what integers can be equal to 
Xk, the largest denominator? Not primes, and not several other integers; 
do the excluded integers have positive density? Density 1 even? Which 
integers can be Xk or Xk-l ? Which can be Xk or Xk-l or Xk-2? Is 
lim inf ~ > e? It is trivial that the limit is > e. In fact perhaps it is 

Xl -
infinite. If m(k) is max(xk) for each k, then Yokota improves a result of 
Erdös & Graham by proving that there is an increasing sequence of integers 
k for which m( k) / k ~ (In In k)3. Is there a sequence of k such that m( k) / k 
is bounded? 

Erdös further asks if it is true that for every solution of 

111 
-+-+ ... +-=1, 
Xl X2 Xk 

max(Xi+l - Xi) 2:: 3? {2,3,6} shows that > 3 is not true but perhaps 
this is the only counterexample. Perhaps max(Xi+1 - Xi) ~ c has only a 
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finite number of solutions. If the Xi are the union of r blocks of consecutive 
integers, the number of solutions is finite and depends only on r. That the 
sequence ! + i + ~ + 13 + ... gives the max X k as a function of r was proved 
by Curtiss. 

If N (n) is the set of integers that can be written as a sum of distinct 
reciprocals of integers ::::: n, then Yokota shows that every natural number 
up to 

lnn (1- 2lnlnn) 
2 lnn 

is in N(n), so that #N(n) 2: (! + o(I))lnn. Erdös asks for an estimate 
for the size of the smallest integer not in N ( n ), and of the largest in N ( n ) . 
How many integers < L:~=II/i cannot be so expressed? Of the ones that 
can, what is their distribution? Do they come in bunches? 

Given a sequence Xl, X2, ... of positive density, is there always a finite 
subset with L: I/Xik = 1 ? If Xi < ci for all i, is there such a finite subset? 
Erdös again offers $10.00 for a solution. If liminf xi/i< 00, he strongly 
conjectures that the answer is negative and offers only $5.00 for a solution. 

Denote by N(t) the number of solutions {Xl, X2, ... , xt} of 1 = L: I/Xi 
andby M(t) the number of distinct solutions Xl ::::: X2 ::::: ... ::::: Xt. Singmas
ter calculated 

t 
M(t) 
N(t) 

1 2 3 4 5 
1 1 3 14 147 
1 1 10 215 12231 

6 
3462 

2025462 

and Erdös asked for an asymptotic formula for M(t) or N(t). 
Graham has shown that if n > 77 we can partition n = Xl + X2 + ... + Xt 

into t distinct positive integers so that L: I/Xi = 1. More generally, that 
for any positive rational numbers 0:, ß, there is an integer r(o:, ß), which 
we will take to be the least, such that any integer greater than r can be 
partitioned into distinct positive integers greater than ß, whose reciprocals 
sum to 0:. Little is known about r(o:,ß), except that unpublished work 
of D. H. Lehmer shows that 77 cannot be partitioned in this way, so that 
r(l, 1) = 77. 

Graham conjectures that for n sufficiently large (about 104 ?) we can 
similarly partition n = xI + x~ + ... + x~ with L: I/Xi = 1. We can also 
ask for a decomposition n = P(XI) + P(X2) + ... + p(Xt) where p(x) is any 
"reasonable" polynomial; for example x2 + X is unreasonable since it takes 
only even values. 

In answer to a question of L.-S. Hahn: is there a set of integers, each 
having an immediate neighbor, the sum of whose reciprocals is an integer, 
Peter Montgomery gave the examples {1,2,7,8,13,14,39,40,76,77,285,286} 
and {2,3,4,5,6,7,9,lO,17,18,34,35,84,85} whose reciprocals each add to 2. 
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L.-8. Hahn also asks: if the positive integers are partitioned into a finite 
number of sets in any way, is there always a set such that any positive 
rational number can be expressed as the sum of the reciprocals of a finite 
number of distinct members of it? Here it must be possible to choose the 
set, independent of the rational number. If this is not possible, then given 
any rational number, can one always choose a set with this property? Now 
the set can depend on the rational number. 

Nagell showed that the sum of the reciprocals of an arithmetic progres
sion is never an integer: see also the paper of Erdös & Niven. 
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D12 Markoff numbers. 

A diophantine equation which has excited a great deal of interest is 

x 2 + y2 + z2 = 3xyz. 

It obviously has what Cassels has called the singular solutions, (1,1,1) and 
(1,1,2) (with the usual definition, the variety has only the singular solution 
(0,0,0)). All solutions can be generated from these since the equation is a 
quadratic in each of the variables, so one integer solution leads to a second, 
and it can be shown that, apart from the singular solutions, all solutions 
have distinct values of x, y and z, so that each such solution is a neighbor 
of just three others (Figure 10). The numbers 1, 2, 5, 13, 29, 34, 89, 
169, 194, 233, 433, 610, 985, ... are called Markoff numbers. To avoid 
trivialities, assume that ° < x ::; y ::; z (so that the inequalities are strict 
if y ~ 2). An outstanding problem is whether every Markoff number z 
defines a unique integer solution (x, y, z). There are occasional claims to 
have proved that the Markoff numbers are unique in this sense, but so far 
proofs appear to be fallacious. 

If M(N) is the number of tripIes with x ::; y ::; z ::; N, then Zagier has 
shown that M(N) = C(lnN)2+0((lnN)1+e ) where C ~ 0.180717105, and 
calculations lead him to conjecture that the nth Markoff number, m n , is 
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(1 + D(n- I / He)) AVn where A+el/v'c ~ 10.5101504. He has no results on 
distinctness, but can show that the problem is equivalent to the insolvability 
of a certain system of diophantine equations. 

Figure 10. The Tree of Markoff Solutions. 

Markoff's equation is a special case of the more general Hurwitz 
equation 

2 2 2 
Xl + X2 + ... + X n = aXIX2··· X n 

for which there are no integer solutions if a > n, and for a = n all integer 
solutions can be generated from (1,1, ... ,1). For any a, 1 ::; a ::; n, there 
is a finite set of solutions which generates all others. Baragar has shown 
that, for any g, there are infinitely many pairs (a, n) so that the equation 
requires at least 9 generators. Let M(n, N) be the number of solutions of 
the Hurwitz equation with a = n and each lXii::; N, then Baragar has 
also shown that M (n, N) grows like C (ln N)o( n )+e for all € > 0 and that 
M(n,N) = O((lnN)o(n)-e, where (Zagier) 0:(3) = 2, but 0:(4) lies between 
2.33 and 2.64 (later improved to 2.43 < 0:(4) < 2.47). Also that 

2lnn () 3lnn 
--<"'n <--In4 _.... - In4· 
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Erdös asked for solutions of the equation xXyY = zZ, apart from the trivial 
ones y = 1, x = z. Chao Ko found an infinity of solutions, of which the 
first three are 

X 

126 

22414 

6144030 

Did he find them all? 

Z 

21137 

268715 
23571531 

Claude Anderson conjectured that the equation wWxXyY = zZ has no 
solutions with 1 < w < x < y < z, but Chao Ko & Sun Qi had earlier 
found an infinity of counterexamples to a generalization of the conjecture 
to any number of variables: 

Xl kkn (kn+1 -2n-k)+2n(kn _1)2(kn -1) 

X2 = kkn (kn+1 -2n-k)(kn _1)2(kn -1)+2 
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where, for k 2: 3, n > 0, and, for k = 2, n > 1. E.g., w = 31226 , X = 31325 , 

Y = 31424 , Z = 31425 . Ajai Choudhry also found a parametric solution for 
k =3. 

Chao Ko, Note on the diophantine equation XXyY = zZ, J. Chinese Math. Soc., 
2(1940) 205-207; MR 2, 346. 

Chao Ko & Sun Qi, On the equation I1~=1 x: i , J. Sichuan Univ., 2(1964) 5-9. 
W. H. Mills, An unsolved diophantine equation, Report Inst. Theory 0/ Numbers, 

Boulder CO, 1959, 258-268. 

D14 ai + bj made squares. 

Leo Moser asked for integers al, a2, bj (1 :$ j :$ n) such that the 2n 
numbers ai + bj are all squares. This can be achieved by making a2 - a1 
a sufficiently composite numberj for example a1 = 0, a2 = 22n+1, 
bj = (22n-j _ 2j - 1)2. 

John Leech observes that the extension to integers al, a2, a3, bj 
(1 :$ j :$ n) is also solvable for any n. We may take al, a2 to be (x±y)2 j a3 
can have an arbitrary value x2 + >.xy + y2, which can then be made square 
by putting x = u2 _v2, Y = 2uv+>.v2. Any values of u and v will give triads 
of squares with differences in this proportion. The problem to find values of 
u, v so that the scale factor is a rational square reduces to finding rational 
points on an elliptic curvej arbitrarily many rational values of bj can then 
be simultaneously scaled to give integers al, a2, a3, bj (1 :$ j :$ n) for any 
n. A much studied case is >. = 0, corresponding to sets of rational right
angled triangles of equal area. We can also specialize to fix a1 = b1 = O. 
Provided that a2, a3 are squares p2, q2 such that q/p has a representation 
as the product of two distinct ratios (u2 - v2)/2uv, then it is again an el
liptic curve problem to find rational squares bj = rJ such that both p2 + rJ 
and q2 + rJ are squares, and again we can rescale to find integers p, q, rj 
(1 :$ j :$ n) for any n such that p2 + rJ and q2 + rJ are integer squares (cf. 
D20). For example, 13/6 has representations (U1,V1,U2,V2) = (9,4,5,1) 
and (8,5,9,1) which yield 

6502 17282 32002 

9702 18722 32802 

16902 23282 35602 

More generally we seek integers ai (1 :$ i :$ m), bj (1 :$ j :$ n). Jean 
Lagrange has produced the matrix 
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[ 

(54,150,111)2 
(6,78,96)2 

(54,318,384)2 
(6, -50, -96)2 

(56,150,79)2 
(16,48,56)2 

(56,312,376)2 
(16,0, -56)2 

(72,234, 177)2 
(48, 192, 168)2 
(72,360,408)2 
(48,176,168)2 

(72, 186, 57)2] 
(48, 120, 12)2 
(72,312,372)2 
(48,104, -12)2 

of squares of quadratic forms, (a, b, c) = au2 + buv + cv2 , which yields an 
infinity of solutions with m = n = 4. For example, u = 2, v = 1 gives 

Lagrange, in a letter dated 83-03-13, sends the matrices 

and 

[ 
592 1122 1442 2072 5922 13512 40772 ] 

2292 2482 2642 3032 6322 13692 40832 
4992 5082 5162 5372 7722 14392 41072 

2342 
3662 
5312 
11462 

3462 
4462 
5892 
11742 

In these examples, the ai, bj are not squares. If the ai, bj are them
selves squares, then they provide configurations relevant to D20 (which 
see) where Lagrange & Leech have made considerable progress. Their tri
ad and tetrad of squares a~ (i = 1,2,3) and b~ (j = 1,2,3,4) with all a~+b~ 
squares lead to a 4 x 5 array 

[ 

02 74220302 
92820002 111845302 

268226002 278305302 
603860402 608404502 

in the present problem. 

89475752 222768002 441423362 ] 
128924252 241322002 451076642 
282756252 348670002 516526642 
610453352 643640402 747998642 

DI5 Numbers whose sums in pairs make squares. 

Erdös & Loo Moser (and see earlier references) also asked the analogous 
question: are there, for every n, n distinct numbers such that the sum of 
any pair is a square? For n = 3 we can take 

al = !(q2 + r2 _ p2) a2 = !(r2 + p2 _ q2) a3 = !(P2 + q2 _ r2) 
and for n = 4 we may augment these by taking s to be any number ex
pressible as the sum of two squares in three distinct ways 
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s = u2 + p2 = v2 + q2 = w 2 + r2 and a4 = s _ ~(p2 + q2 _ r2 ). 

Jean Lagrange has given a quite general parametrie solution for n = 5 
and a simplification of it whieh appears to give a majority of all solutions. 
He tabulates the first 80 solutions, calculated by J.-L. Nicolas. The smallest 
is 

-4878 4978 6903 12978 31122 

and the smallest positive solution (at most one number can be negative) is 

7442 28658 148583 177458 763442. 

In a letter dated 72-05-19 he sends the following solution for n = 6: 

-15863902 17798783 21126338 49064546 82221218 447422978 

In fact the problem goes back to T. Baker who found five integers whose 
sums in pairs were squares, and C. Gill who found five whose sums in threes 
were squares. 

Lagrange also found sets of n squares of whieh any n - 1 have their 
sum square. For n = 3, 5 and 8, the smallest such are the squares of 
(44,117,240), (28,64,259,392,680) and (79,112,204,632,896,916,1828,2092). 

Martin LaBar asked for a proof or disproof that a 3 x 3 magie square 
can be constructed from nine distinct integer squares. This requires that 
the nine quantities x2 , y2, Z2, y2 + z2 _ x2 , Z2 + x2 _ y2, x2 + y2 _ z2, 

2x2 - y2, 2x2 - z2, 3x2 - y2 - z2 be distinct perfeet squares. Not very likely, 
though it is not difficult to get four of the eight magie sums right. 

T. Baker, The Gentleman's Diary or Math. Repository, London, 1839, 33-35, 
Question 1385. 

C. Gill, Application 0/ the Angular Analysis to Indeterminate Problems 0/ 
Degree 2, New York, 1848, p. 60. 

Martin LaBar, Problem 270, Canad. Math. J., 15(1984) 69. 
Jean Lagrange, Cinq nombres dont les sommes deux a deux sont des carres, 

Seminaire Delange-Pisot-Poitou (Theorie des nombres) 12e annee, 20(1970-
71) lOpp. 

Jean Lagrange, Six entiers dont les sommes deux a deux sont des carres, 
Acta Arith., 40(1981) 91-96. 

Jean Lagrange, Sets of n squares of which any n-1 have their sum square, Math. 
Comput., 41(1983) 675-681. 

Jean-Louis Nicolas, 6 nombres dont les sommes deux a deux sont des carres, Bull. 
Soc. Math. Prance, Mem. No 49-50 (1977) 141-143; MR 58 #482. 

A. R. Thatcher, A prize problem, Math. Gaz., 61(1977) 64. 
A. R. Thatcher, Five integers which sum in pairs to squares, Math. Gaz., 62(1978) 

25. 
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DI6 TripIes with the same sum and same 
product. 

The problem to find as many different tripies of positive integers as possible 
with the same sum and the same product has been solved by Schinzel: you 
can have arbitrarily many. In the interim Stephane Vandemergel found 13 
tripies each with sum 17116 and product 21033527211 . 13· 19. It may be 
of interest to ask for the smallest sums or products with each multiplicity. 
For example, for 4 tripies, J. G. Mauldon finds the smallest common sum 
to be 118: (14,50,54), (15,40,63), (18,30,70), (21,25,72) and the smallest 
common product to be 25200: (6,56,75), (7,40,90), (9,28,100), (12,20,105). 

Lorraine L. Foster & Gabriel Robins, Solution to Problem E2872, Amer. Math. 
Monthly, 89(1982) 499-500. 

J. G. Mauldon, Problem E2872, Amer. Math. Monthly, 88(1981) 148. 

DI7 Product of blocks of consecutive integers not 
apower. 

Erdös & Selfridge have proved that the product of consecutive integers 
is never apower, and the binomial coefficient (~) (see B31) is never a 
power for n 2:: 2k 2:: 8. If k = 2, then (~) is a square infinitely often, 
but Tijdeman's methods (see D9) will probably show that it is never a 
nontrivial higher power (for cubes and fourth powers, see Mordell's book), 
and that k = 3 never gives a power, apart from n = 50 (see D3). 

Erdös & Graham ask if the product of two or more disjoint blocks of 
consecutive integers can be apower. Pomerance has noted that 

I1:=1 (ai - l)ai(ai + 1) 
is a square if al = 2n - 1 , a2 = 2n, a3 = 22n- 1 - 1, a4 = 22n - 1, but Erdös 
& Graham suggest that if l 2:: 4, then I1:=1 I1~=1 (ai + j) is a square on 
only a finite number of occasions. 

K. R. S. Sastry notes that the product of the blocks (n - 1 )n( n + 1) and 
(2n - 2)(2n -1)2n is a square if (n + 1)(2n -1) = m2 • This is equivalent 
to a Pell equation with an infinity of solutions. E.g. n = 74 gives 

(73·74·75)(146· 147·148) = 732 . 742 .2102 

Erdös also asks ifthe product of (more than one) consecutive odd num
bers is never apower (higher than the first)? Is the product of 4 consecu
tive members of an A.P. never apower? Euler showed that it cannot be a 
square. Fermat had shown that the members cannot be squares individu
ally, while a nonsquare divisor must divide two distinct terms, either (a) 2 
divides the first & third or the second & fourth, or (b) 3 divides the first 
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& fourth, or both. (a) alone is impossible mod 8, (b) alone is impossible 
mod 3, but we could have 6t2, u2, 2v2, 3w2. But this implies w 2 + t2 = v2 
and w2 + 4t2 = u2, which can be disproved by descent - one Pythagorean 
ratio can't be twice another. For higher powers Leech notes that we can't 
have three cubes in A.P. 

Sastry asks for which k can the product of four consecutive terms 
of an A.P. be a k-gonal number, where the r-th k-gonal number is 

~r((k - 2)r - (k - 4)). 
Not for k = 4, as Euler showed, but Sastry finds solutions for all other k 
except 7, 14 and 37. Are these impossible? 

P. Erdös, On consecutive integers, Nieuw Arch. Wisk., 3(1955) 124-128. 
P. Erdös & J. L. Selfridge, The product of consecutive integers is never apower, 

Illinois J. Math., 19(1975) 292-301. 

D1S Is there aperfeet euboid? Four squares 
whose sums in pairs are square. Four 
squares whose differenees are square. 

Is there a rational box? Our treatment of this notorious unsolved problem 
is owed almost entirely to John Leeeh. Does there exist aperfeet euboid, 
with integer edges Xi, face diagonals Yi and body diagonal z; are there 
solutions of the simultaneous diophantine equations 

(A) 

(B) 

(i = 1, 2, 3; and where necessary, subscripts are reduced modulo 3.) 
Martin Gardner asked if any six of Xi, Yi, z could be integers. Here 

there are three problems: just the body diagonal z irrational; just one edge 
X3 irrational; just one face diagonal Yl irrational. 

Problem 1. We require solutions to the three equations (A). Suppose 
such solutions have generators ai, bi where 

X . X . Y 2a b . a2 - b~ . a~ + b2 
i+l· i+2· i = i i· ~ ~. ~ ~ 

Then we want integer solutions of 

(C) 
2 b2 rr a . - . 
-~--~ = 1. 

2aibi 

We can assume that the generator pairs have opposite parity and replace 
(C) by 

CD) 
a~ - b~ a~ - b~ 0:2 - ß2 
2al b1 . 2a2b2 = 20:ß 
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An example is 

(E) 

Kraitchik gave 241 + 18 - 2 cuboids with odd edge less than a million. Lal 
& Blundon listed all cuboids obtainable from (D) with ab bl ; a, ß S 70, 
including the curious pair (1008,1100,1155), (1008,1100,12075). Leech 
has deposited a list of all solutions of (D) with two pairs of ab bl ; a2, b2; 

a, ß S 376. 
Reversal of the cyclic order of subscripts in (C) leads to the derived 

cuboid: example (E) gives the least solution (240,44,117), known to Euler, 
and the derived cuboid (429,2340,880). Note that 240·429 = 44·2340 = 
117·880. 

Several parametric solutions are known: the simplest, also known to 
Euler, is 

(F) al = 4pq, 

For al, bl fixed, (D) is equivalent to the plane cubic curve 

a~ - b~ u2 - 1 2v 
2al bl = ~ . v2 - 1 

whose rational points are finitely generated, so MordeIl teIls us that one 
solution leads to an infinity. But not all rationals aI/bI occur in solutions: 
aI/bI = 2 is impossible, so there is no rational cuboid with a pair of edges 
in the ratio 3:4. 

Problem 2. Just an edge irrational. We want x~ + x~ = Y~ with 
t + x~, t + x~, t + Y~ all squares. This was proposed by "Mahatma" and 
readers gave Xl = 124, X2 = 957, t = 13852800. Bromhead extended this 
to a parametric solution. An infinity of solutions is given by 

(G) 

where (~, "l, () is a Pythagorean tripie. The simplest such is ~ = 5, "l = 12; 
Xl = 7800, X2 = 18720; t = 211773121. An earlier solution was given by 
Flood. 

These are not all. We seek solutions of 

(H) 

other than z Y3 (t = 0). Leech found 100 primitive solutions with 
z < 105 , 46 of which had t > O. The generators for (H) satisfy 

a~ + ß~ 2a2ß2 a2 - b2 

2alßI 'a~+ß~ = ~ 
(I) 
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so solutions for fixed x2/ Xl correspond to rational points on the cubic curve 

(J) 

The trivial solution t = 0 corresponds to several ordinary points which 
generate an infinity of solutions for each ratio x2lxl. Solutions form cyeles 
of four: 

(K) (2 = ~~ + TJ~ = ~~ + TJ~ = ~§ + TJ§ = ~l + TJl, 6~3 = 6~4, 
a + ~~, ~~ + ~§, ~§ + ~l, ~l + ~~ all squares, 

corresponding to two pairs x21xl which correspond to two points collinear 
with the point t = 0 on (J). Conversely, such a pair of points corresponds 
to a cyele of four solutions. 

Problem 3. Just one face diagonal irrational. There are two elosely 
related problems: find three integers whose sums and differences are all 
squares; find three squares whose differences are squares. The cuboid form 
of the problem asks for integers satisfying 

(L) 

whose generators satisfy 

(M) 

Write Ui = (a~ - ßn2/4a~ß'f and (M) becomes U1U3 = 1 +U2, an equation 
investigated by many in the contexts of cycles and frieze patterns. So
lutions occur in cyeles of five! Leech listed 35 such with ab ßb a2, ß2 ~ 50 
and deposited in UMT a list of all cyeles with two pairs ai, ßi ~ 376. 
There is a elose connexion with Napier's rules and the construction of ra
tional spherical triangles. 

Solutions to (L) are given by x~ = Z2 - y~ = (p2 - q2)(r2 - S2), 
x~ = Z2 - y~ = 4pqrs, when the products of the numerators and denomi
nators of (p2 - q2)/2pq and (r2 - s2)/2rs are each squares. Euler made p, 
q, r, s squares and found differences of fourth powers, e.g., 34 - 24 , 94 - 74 , 

114 - 24 , whose products in pairs are squares. The first two give the sec
ond smallest solution (117,520,756) of this type, whose cyele ineludes the 
smallest (104,153,672), also known to Euler. 

We can also express Z2 = x~ + y~ = x~ + y~ as the sum of two squares in 
two different ways: x31xl = (a~-ß~)/2a2ß2, x21xl = (a~-ß§)/2a3ß3 give 
z2 = 4(a~a~ + ß~ß§)(a~ß§ + a~ß~). Euler made each factor square and 
found two rational right triangles of equal area ~a2a3ß2ß3' Diophantus 
solved this with ß21a2 = (s + t)/2r, ß31a3 = slt, where r2 = s2 + st + t 2, 
s = l2 - m2, t = m2 - n2 . Put (l,m,n) = (1,2,-3) and we have a cyele 
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containing the third, fourth and fifth smallest of these cuboids. Leech found 
89 with z < 105 . 

For fixed 0:1/ ßl a nontrivial solution to (M) corresponds to an ordinary 
point, which generates an infinity of solutions, on the curve 

The tangent at the point generates a cyde of special interest. 
(M), like (D), but unlike (I), does not have nontrivial solutions for all 

ratios 0:/ ß; e.g., there are none with 0:/ ß = 2 or 3 and again no cuboids 
with edges in the ratio 3:4. Here we do not have "derived" cuboids. 

Two other parametric forms for ratios (p2 - q2) /2pq whose product and 
quotient are squares, are 

Four squares whose sums in pairs are square. A solution of (C) 
gives three such squares; it may be portrayed as a trivalent vertex of a 
graph, the three edges joining it to nodes representing generator pairs 
for rational triangles. If such a pair occurs in one solution it occurs in 
infinitely many, so the valence of anode is infinite. We seek a subgraph 
homeomorphic to a tetrahedron K 4 whose vertices give four solutions of (C) 
and whose edges contain nodes corresponding to generator pairs common to 
pairs of solutions of (C). Lists of solutions have revealed no such subgraph; 
indeed, not even a dosed circuit! Until a circuit is encountered, we need 
not distinguish between the pairs a, band a ± b. 

So no example of four such squares is known. Construction of four 
squares with five square sums of pairs is straightforward. 

A. R. Thatcher related the problem to the equation y2 = _x8 + 35x4 -

25. The only integer solutions are (±1, ±3), but there may be a finite 
number of other rational solutions. Even if not, this does not predude 
solutions to the original problem. 

Four squares whose differences are square. This problem extends 
(M) analogously to the above extension of (C). Avertex is now pentavalent, 
adjacent to a cyde of five nodes or generator pairs. The cyclic order of the 
edges is important, but not the sense of rotation. A solution of (M) corre
sponds to three consecutive edges, and here we must distinguish between 
0:, ß and 0: ± ß: the corresponding nodes are joined with double edges in 
Figure 11. The nodes are again of infinite valence. Four squares of the 
required type would correspond to a subgraph homeomorphic to K 6 , with 
six vertices and 15 nodes, one on each edge. The only cyde so far found 
is shown in Figure 11 and this will not serve as part of such a subgraph. 
Although a solution is unlikely, there do not appear to be any congruence 
conditions which forbid it. 
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Figure 11. Three Cycles of Five Generator Pairs. 
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Though there is now no necessary connexion between the generator 
pairs Cl, ß and Cl ± ß, solutions of (M) containing both pairs do occur. Such 
a solution leads to a sequence of four squares with sums of two or three 
consecutive terms all square. How long can such a sequence be? For more 
than four we need a sequence of 5-cycles of solutions of (M) each containing 
adjacent generator pairs Cl, ß; a, ß where Cl ± ß, a ± ß belong one each to 
the neighboring cycles. Leech found the sequence 

(56,31)(17,6);(23,11)(23,7);(15,8)(26,7);(33,19)(77,19);(48,29)(35,4);(39,31)(13,9) 

where 23, 11 = 17±6, etc., which gives a sequence of eight such squares. The 
squares of the edges of a perfect cuboid would form an infinite (periodic) 
sequence. Four nonzero squares with differences all square would lead to a 
sequence with terms three apart in constant ratio: an integer ratio would 
give an infinite sequence. Leech has since given the longer sequence 

(14,1)(224,37); (261,187)(155,132); (287,23)(23,7); 
(15,8)(26,7); (33,19)(77,19); (48,29)(35,4); (39,31)(13,9) 

with "both ends surprisingly smalI" and asks "are they really ends?" He 
has no proof that a pair (a, b) can occur while (a + b, a - b) does not. He has 
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some other sequences of the same length, but so far none longer. Randall 
Rathbun was unable to extend this sequence before (14,1) or after (13,9), 
but he was able to extend the earlier sequence to seven terms by prefixing 
(26767,2185)(87,25); or (940,693)(87,25); before (56,31). 

The perfeet rational cuboid. None of the known numerical solu
tions to problems 1, 2 and 3 gives aperfect cuboid, and many parametrie 
solutions, for example (G), can be shown not to yield one. Spohn used 
Pocklington's work to show that one of the two mutually derived cuboids 
of (F) is not perfect and E. Z. Chein and Jean Lagrange have each shown 
that the derived cuboid is never perfeet. On the other hand, no known 
parametric solution is complete so impossibility can't be proved from these 
alone. A solution of the problem in the previous section need not lead to 
aperfect cuboid. Korec showed that the least edge of a perfect rational 
cuboid must exceed 106 . Extensive searches, mainly by Randall Rathbun 
and Torbjorn Granlund, have shown that aperfect rational cuboid must 
have all its edges greater than 333750000. During the search, the results of 
which have been deposited in UMT, 6800 + 6380 + 6749 solutions of the 
three problems were found. Recently Korec has shown that the greatest 
edge is greater than 109• Leech amplifies a result of Horst Bergmann to 
show that the product of the edges, face diagonals and body diagonal must 
be divisible by 

28 X 34 X 53 X 7 x 11 x 13 x 17 x 19 x 29 x 37. 

Unsolved problems. Do three cycles of solutions of (M) exist whose 
graph is as in Figure 12? Here we've adopted John Leech's convention of 
writing the ratio of the sides as a fraction, e.g. 1l!., where the same pair 

Xl 
of generators belongs to both cycles (as the pair 14, 3 in Figure 11), but 
writing it as a ratio, e.g. X2 : X3, where a pair of generators belongs to 
one cycle, and their sum and difference to the other (as 15, 8 and 23, 7 in 
Figure 11). 

Are there ratios (p2 - q2)/2pq, (r2 + s2)/2rs with product and quotient 
both of the form (m2 - n2 )/2mn? Is there a nontrivial solution of 

(a2c2 _ b2d2)(a2d2 _ b2c2) = (a2b2 _ c2d2)2? 

Such a solution would lead to a perfect cuboid. Is there a 5-cycle of solutions 
of (M) with 

What circuits, if any, occur in the graph of solutions of (C)? What circuits 
occur in the graph of solutions of (M)? Are there cycles of solutions of 
(I) other than those of form (K)? What ratios besides 3/4 cannot occur 
as ratios of edges of cuboids in Problem 1? In Problem 3? Is there a 
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parallelepiped with all edges, face diagonals and body diagonals rational? 
Rathbun has found 41 pairs of primitive cuboids in which two edges of 
one equal two of the other. Twenty-one of these are pairs of solutions to 
Problem 1, with the body diagonal irrational; 13 are pairs of solutions to 
Problem 2; three are pairs of solutions to Problem 3, with a face diagonal 
irrational. Three are solutions to Problems 1 and 3, while the last is a 
solution to Problems 1 and 2. 

YI 
Xl 

Y3 
X3 

Figure 12. Are there three Cycles of Solutions of (M) like this? 
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D 19 Rational distances from the corners of a 
square. 

Is there a point all of whose distances from the corners of the unit square 
are rational? It was earlier thought that there might not be any nontrivial 
example (Le., an example not on the side ofthe square) of a point with three 
such rational distances, but John Conway & Mike Guy found an infinity of 
integer solutions of 

where a, b, c are the distances of a point from three corners of a square of 
side s. There are relations between such solutions as shown in Figure 13. 

For the fourth distance d to be an integer we also need a2 + c2 = b2 + d2 • 

In the three-distance problem, one of s, a, b, c is divisible by 3, one by 4, 
and one by 5. In the four-distance problem, s is a multiple of 4 and a, b, c, 
d are odd (assuming that there is no common factor). If s is not a multiple 
of 3 (respectively 5) then two of a, b, c, d are divisible by 3 (resp. 5). 
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Figure 13. A Solution of the Three-Distance Problem, and its Inverse. 

If the problem is generalized to a rational rectangle, then a2 + c2 = 
b2 + d2 is still required. This is the basis of a Martin Gardner puzzle [Math
ematical Games, Sei. Amer. 210 #6 (June 1964), Problem 2, p.116]; see 
also the Dodge reference below. A similar problem with a square with 
an irrational side and one irrational distance occurs in Dudeney, Cant er
bury Puzzles, No. 66, pp. 107-109, 212-213. Gardner sends a copy of 
correspondence between Leslie J. Upton and J. A. H. Hunter. Hunter's 
67-03-21 letter gives an infinity of solutions with the three distances in 
A.P.: a = m2 - 2mn + 2n2 , b = m2 + 2n2 , c = m2 + 2mn + 2n2 and 
8 2 = 2m2 (m2 + 4n2 ) where 8 is an integer if m = 2(u2 + 2uv - v2 ), 

n = u2 - 2uv - v2 . For example, there is a point at distances 85, 99 
and 113 from three consecutive corners of a square of side 140. It can be 
shown that the fourth distance is never rational in such solutions. 

John Leech found points solving the three-distance problem which are 
dense in the plane. These include the Conway-Guy solutions, and the 'in
verses' (in the sense of Fig. 13) of the Hunter solutions. But there are 
other solutions, and in some sense we now know "all" of them. Consider 
the more general problem of dissecting a rational square into rational tri
angles. It is known that at least four triangles are needed and there are 
just four candidate arrangements, the 8-configuration, the K-configuration, 
the v-configuration and the x-configuration. The first two turn out to be 
"duals" and solutions are given by the rational points on an infinite family 
of elliptic curves. The first few hundred have been investigated by Brem
ner and Guy, who have also dealt similarly with the v-configurations. The 
x-configuration, i.e., the "four distance" problem, remains as an astonish
ingly hard nut to crack. 
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There are infinitely many solutions of the corresponding problem of 
integer distances a, b, c from the corners of an equilateral triangle of side 
t. In each of these one of a, b, c, t is divisible by 3, one by 5, one by 7 and 
one by 8. John Leech has sent us a neat and elementary proof of the fact 
that the points at rational distances from the vertiees of any triangle with 
rational sides are dense in the plane of the triangle. This result was proved 
earlier by Almering; see reference at D21. Arnfried Kemnitz notes that 
a = m2 + n 2; b, c = m2 ± mn + n 2 with m = 2( u2 - v2), n = u2 + 4uv + v2 
gives t = 8(u2 - v2)(U2 + uv + v2) and an infinity of solutions in whieh 
the points are neither on the sides nor the circumcircle of the triangle. A 
computer search showed that (57,65,73,112) was the smallest such. 

Thomas Berry writes the last displayed equation as 

and notes that this, and the corresponding equation 

for the equilateral triangle, both represent Kummer surfaces, Le., quartie 
surfaces with just 16 singular points. They are not isomorphie, but are of 
the same special type, known as tetrahedroids. 

There are the following consequences: 

• A Kummer surface is not rational: there is no general parametrie 
solution of either problem, in the sense that there are no polynomials 
(resp. rational functions) giving all integer (resp. rational) solutions. 

• One-parameter families of solutions correspond to parametrizable 
curves on the surface. For example, the 16 conics (whieh always 
exist on a Kummer surface) give, in the equilateral triangle problem, 
points on the sides and circumcircle. The solution given by Arnfried 
Kemnitz corresponds to the plane section b + c = 2a. 

• The elliptie curves used by Bremner & Guy to find the delta-Iambda 
configurations form a pencil on the former surface, and since the 
surfaces are both tetrahedroids, there may be an elliptic pencil on 
the "equilateral triangle" surface, whieh allows an analogous attack. 

Berry generalizes Almering's result by showing that if the squares on 
the sides of a triangle are rational and at least one side is rational, then 
the set of points at rational distances from all three vertices is dense in the 
plane of the triangle. 

Jerry Bergum asks for what integers n do there exist positive integers 
x, y with x J.. y, x even, and x 2 + y2 = b2 & x 2 + (y - nx)2 = c2 both 
perfect squares. If n = 2m (2m2 + 1), then x = 4m(4m2 + 1), Y = mx + 1 
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is a solution. There are no solutions if n = ±1, ±2, ±4, ±11 or ±p where 
p == 3 mod 4 and p2 + 4 is prime, e.g., ±3, ±7. Bergum has several infinite 
families of values of n for which there are solutions, e.g., n = 8t2 ± 4t + 2 
with t > O. There are solutions with n = ±5, ±6, ±8, ±9, ±14, ±19. If 
n = 8, the least x for which there is a y is x = 2996760 = 23 .3.5 ·13 ·17 ·113 
and if n = 19 the least x is 2410442371920. One solution is n = 5, x = 120, 
Y = 391 as may be seen from Fig. 15(b)! The connexion between this 
problem and the original one is that (x, y) are the coordinates of P at 
distances band c from the origin 0 and an adjacent corner of the square 
of side s = nx where n is an integer. 

Ron Evans notes that the problem may be stated: which integers n 
occur as the ratios base/height in integer-sided triangles? The sign of n 
is ± according as the triangle is acute or obtuse (e.g., n = -29, x = 120, 
y = 119 is a solution). He also asks the dual problem: find every integer
sided triangle whose base divides its height. Here the height/base ratios 
1 and 2 can't occur, but 3 can (e.g., base 4; sides 13, 15; height 12). If 
a ratio can occur, are there infinitely many primitive triangles for which 
it occurs? K. R. S. Sastry gives the triangles (3389, 21029, 24360) and 
(26921, 42041, 68880) in each of which the ratio base/height is 42, and 
(25,26,3) and (17,113,120) with ratios 1/8 and 8 (the third member of the 
tripie is the base in each case). 
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D20 Six general points at rational distances. 

The first edition of this book asked "are there six points in the plane, no 
three on a line, no four on a circle, all of whose mutual distances are ratio
nal?" Leech pointed out that one such configuration is obtained by fitting 
six copies of a triangle whose sides and medians are all rational. Such trian
gles were studied by Euler (see D21): the simplest has sides 68, 85, 87 and 
medians the halves of 158, 131, 127 [Fig. 14(a)J. Harborth & Kemnitz have 
shown that this tri angle leads to the minimal configuration of six points, 
no three collinear, no four concyclic, at integer mutual distances. A related 
configuration is obtained by inversion in a concentric circle; the six trian
gles are then similar but no longer congruent. Can any such configuration 
be extended? Or are there any sets of more than six such points? Kemnitz 
has exhibited an unsymmetrical set of six points at integer distances, 13 of 
them distinct, the largest 319 [Fig. 14(b)J. 

Figure 14(a). A triangle with rational Figure 14(b). Six points at integer 
medians, reflected in its centroid. distances, 13 of them distinct. 

There are two opposite extreme conjectures: (a) that there is a fixed 
number c such that any n points in a plane whose mutual distances are 
rational include at least n - c which are collinear or concyclic, and (b) 
(ascribed to Besicovitch, but in 1959 he expressed the contrary opinion) 
that any polygon can be approximated arbitrarily closely by a polygon with 
all its sides and diagonals rational. If (a) is valid, what is the maximum 
value of c? 

If we have an infinite sequence of points {xd with all distances rational, 
can we characterize the set of limit points? It was already known to Euler 
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that they could be dense on a circle. If the sequence is dense in the plane, 
Ulam conjectured that not all distances could be rational. Does it contain 
a dense subsequence with all distances irrational? 

We can choose a straight line and two points at unit distance from it 
on a perpendicular line; then points on the first line at distances of the 
form (u2 - v2 ) /2uv from the intersection form an infinite set of points with 
rational mutual distances. By inversion in a circle centred at one of the 
off-line points, we obtain a dense set of points on a circle, together with 
its centre, with rational mutual distances. This proves Conjecture (b) for 
cyclic polygons. Peeples (who quotes Huff) extended this to a straight line 
with four points at distances ±p, ±q from it on a perpendicular line. If 
q/p has a representation as the product of two distinct ratios of the form 
(u2 - v2 ) /2uv, then it has an infinity of them, and there will be an infinity 
of points on the first line at rational distances from each other and from 
the four off-line points. Thus c is at least 4 in Conjecture (a). By inversion 
in a circle centred at one of the four off-line points, we obtain a dense set 
of points on a circle, together with its centre and a pair of points inverse in 
the circle, with rational mutual distances. Thus c is at least 3 for the circle 
in Conjecture (a). Are these the maximum values of c for infinite sets? 

What finite sets surpass these values of c? Leech gave an infinite family 
of sets of nine points, with no more than four on any line or circle, so c = 5 
for these sets. They are based on solutions of the simultaneous Diophantine 
equations 

most simply x = 120, Y = 209, Z = 182 [Fig. 15(b)]. 

Figure 15 (a) & (b). Leech's Configurations of Points at Rational Distances. 

Lagrange and Leech have given infinite families of pairs of triads of 
integers ab a2, a3, and b1 , ~, b3, such that the nine sums a~ + b; are 
all squares. These lead to sets of 13 points on two perpendicular lines, 
comprising their intersection, points (±ai,O) on one line and points (O,±bj ) 
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on the other, with integer mutual distances and no more than seven on 
a line or four on a circle, so C = 6 for these sets. The simplest example 
has ai = 952, 1800, 3536 and bj = 960, 1785, 6630. They also found an 
example in which one triad is extended to a tetrad; it has 

9282000, 

7422030, 

26822600, 

8947575, 

60386040, 

22276800, 44142336, 

but these still give only C = 6. Leech has since found three further examples. 
Can a pair of tetrads be found with all 16 sums a; + b; square? If so, we 
would obtain a set of 17 points with integer mutual distances and c = 8. 

Noll and Bell search for configurations with no three points collinear 
and no four concyclic, but using only lattice points. They caU such config
urations N-clusters. They, and independently William Kalsow & Bryan 
Rosenburg, found the 6-cluster (0,0), (132,-720), (546,-272), (960,-720), 
(1155,540), (546,1120). They define the extent of an N-cluster to be the 
radius of the smallest circle, centred at one of the points, which contains 
them all. They find 91 nonequivalent prime 6-clusters of extent less than 
20937, but no 7-clusters. 
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D21 Triangles with integer sides, medians and 
area. 

Is there a triangle with integer sides, medians and area? There are , in 
the literature, incorrect "proofs" of impossibility, but the problem remains 
open. It may be instructive to would-be solvers to find the fallacies in the 
arguments of Schubert and of Eggleston, referred to below. For some time 
it had been suspected that not even two rational medians were possible in 
a Heron triangle, but discoveries by RandalI L. Rathbun, Arnfried Kemnitz 
and R. H. Buchholz have shown that they can occur. Even more recent
ly, Rathbun has found infinitely many such, and it seems reasonable to 
conjecture that there are infinitely many infinite families, but this remains 
undemonstrated, as does the existence or impossibility of three rational me
dians. If we don't require the area to be rational, there are many solutions. 
Euler gave a parametric solution of degree five, 

a = 6A4 + 20A2 - 18, b, c = A5 ± A4 - 6A3 ± 26A2 + 9A ± 9 

with medians -2A5 + 20A3 + 54A, ±A5 + 3A4 ± 26A3 - 18A2 ± 9A + 27. 
Recently George eole has shown that, up to symmetry, there are just two 
parametric solutions of degree five, Euler's and a new one. These have not 
so far yielded a non-degenerate triangle with rational area. 

A host of problems arise from Pythagorean triangles. Eckert asked if 
there are two distinct Pythagorean tripies whose products are equal, Le., 
is there a solution of 

in nonzero integers and Prothro asked if one product could be twice the 
other. More generally, Leech asked what small integers are the ratios oftwo 
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such products? Trivially xy(x4 - y4) = 8ZW(Z4 - w4) when x, y = Z ± w. 
Since every product is divisible by 3·4·5, many integers are possible, from 
13 = 5·12·13 upwards. More subtly 11 = 21·220·221 and imprimitively 

3·4·5 13·84·85 ' 

Are these the smallest? 

63 . 24 . 143 . 145 
6 = 135. 352 . 377 . 

He also notes that one product is eight times the other on setting x, y = 
z±w. 

How many primitive Pythagorean triangles can have the same area? A 
tripIe of such, with generators (77,38), (78,55) and (138,5) was found by 
Charles L. Shedd in 1945. In 1986 Rathbun found three more: 
(1610,869), (2002,1817), (2622,143) (2035,266), (3306,61), (3422,55) and 
(2201,1166), (2438,2035), (3565,198). 
A fifth tripIe, (7238,2465), (9077,1122), (10434,731), was found indepen
dently on consecutive days by Dan Hoey and Rathbun. Is there an infinity 
of tripIes? Are there quadrupIes? 

Sastry asks for Pythagorean triangles with a square and a triangle for 
legs and a pentagonal number, ~n(3n - 1), for hypotenuse. Are there any 
nontrivial examples besiiles (3,4,5) and (105,1O0,145)? Does it help to allow 
pentagonal numbers of negative rank, ~n(3n + I)? 

Despairing of solving the problem of the rational box (DI8), some peo
pIe have investigated other polyhedra all of whose distances are integers. 
There are seven topologically different convex hexahedra, for example, and 
integer examples have been found by Harborth & Kemnitz (see D20) and 
by Peterson & Jordan. Sastry asked for solutions to the rational box prob
lem, but using triangular numbers instead of squares. Charles Ashbacher 
gave the triangular numbers 66, 105, 105 whose sums of pairs and whose 
total are all triangular . 
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boxes, Amer. Math. Monthly, 101(1994). 

E. T. Prothro, Amer. Math. Monthly 95(1988) 3I. 
Randall L. Rathbun, Letter to the Editor, Amer. Math. Monthly, 99(1992) 283-

284. 
K. R. S. Sastry, Problem 1725, Crux Mathematicorum, 18(1992) 75. 
K. R. S. Sastry, Problem 1832, Crux Mathematicorum, 19(1993) 112. 
H. Schubert, Die Ganzzahligkeit in der algebmischen Geometrie, Leipzig, 1905, 

1-16. 

D22 Simplexes with rational contents. 

Are there simplexes in any number of dimensions, all of whose contents 
(lengths, areas, volumes, hypervolumes) are rational? The answer is "yes" 
in two dimensions; there are infinitely many Heron triangles with rational 
sides and area. An example is a triangle of sides 13, 14, 15 which has area 
84. The answer is also "yes" in three dimensions, but can all tetrahedra be 
approximated arbitrarily closely by such rational ones? 

John Leech notes that four copies of an acute-angled Heron triangle 
will fit together to form such a tetrahedron, provided that the volume is 
made rational, and this is not difficult. E.g., three pairs of opposite edges 
of lengths 148, 195, 203. This is the smallest example: he finds the next 
few tripIes to be 

(533,875,888),(1183,1479,1804),(2175,2296,2431),(1825,2748,2873), 

(2180,2639,3111),(1887,5215,5512),(6409,6625,8484),(8619,10136,11275). 

He also suggests examining references on p. 224 of Vol 11 of Dickson's 
History [AU]: 

R. Güntsche, Sitzungsber. Berlin Math. Gesell., 6(1907) 38-53. 
R. Güntsche, Archiv Math. Phys.(3), 11(1907) 37I. 
E. Haentzschel, Sitzungsber. Berlin Math. Gesell., 12(1913) 101-108 & 17(1918) 

37-39 (& cf. 14(1915) 371). 
O. Schultz, Ueber Tetraeder mit rationalen Masszahlen der Kantenlängen und 

des Volumen, Halle, 1914, 292 pp. 

Dickson appealed for a copy of this last. Did he ever get one? Does 
anyone know of a copy? Would they be willing to donate it, or offer it for 
sale, to the Strens Collection? 

Leech also notes that this problem is answered positively in three dimen
sions by solutions to Problem 3 in 018 (find a box which is rational except 
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for one face diagonal). This problem was published as Problem 930 in 
Crux Mathematicorum, 10(1984) #3, p. 89, and the solution by the COPS 
(presumably an acronym for the Carleton (Ottawa) Problem Solvers) is: 

Take a tetrahedron with a path of three mutually perpendicular edges, 
a = p2q2 - r2s2, b = 2pqrs, c = p2r2 - q2s2. Then a2 + b2, b2 + c2 are 
squares and a2 + b2 + c2 = (p4 + s4)(q4 + r4) is a square if 

[John Leech notes "but not only if" and gives four casual examples, 

(14 + 24 )(24 + 134 ) = 6972 ; (14 + 24 )(384 + 434 ) = 96732 ; 

(14 + 24 )(3144 + 8634 ) = 12756432 ; (14 + 34 )(94 + 4374 ) = 17292982 , 

which imply furt her ones of type (24 + 134)(384 + 434 ).] 

This equation was solved by Euler. The solution mentioned in D9 is 

p, q x7 + x5y2 _ 2x3y4 ± 3x2y5 + xy6 

r, s x6y ± 3x5y2 _ 2x4y3 + x 2y5 + y7 

hut this is not in any sel1se complete. 
Buchholz found that the only rational tetrahedron with edge lengths 

::; 156 was that with edge lengths 117, 80, 53, 52, 51, 84, face areas 1800, 
1890, 2016, 1170, and volume 18144. He also shows that a regular d
dimensional simplex with rational edge has rational d-dimensional volume 
just if dis of shape 4k(k + 1) or 2k2 - 1. 

Dove & Sumner relax the condition that the faces of a tetrahedron have 
rational area and find two tetrahedra with volume 3 and pairs of opposite 
edges (32,76) (33,70) (35,44) and (21,58) (32,76) (47,56). They ask ifthere 
are infinitely many tetrahedra with integer edges and the same integer 
volume. Is there such a tetrahedron with volume any given multiple of 3? 
They have examples from 3 to 99, except for 87. 

The tetrahedron with a pair of opposite edges 896 and 990 and the 
other four edges each 1073, two face areas 436800 and 471240, and volume 
62092800, is mentioned by Sierpinski and by Leitzmann. 

Ralph Heiner Buchholz, Perfect pyramids, Bull. Austral. Math. Soc., 45(1991) 
353-368. 

Kevin L. Dove & John L. Sumner, Tetrahedra with integer edges and integer 
volume, Math. Mag., 65(1992) 104-111. 

K. E. Kalyamanova, Rational tetrahedra (Russian), Izv. Vyssh. Uchebn. 
Zaved. Mat., 1990 73-75; MR 92b:11014. 

W. Lietzmann, Der pythagoreisch Lehrsatz, Leipzig, 1965, p. 91 [not in 1930 
edition]. 

W. Sierpinski, Pythagorean Triangles, New York, 1962, p. 107. 



192 D. Diophantine Equations 

D23 Some quartic equations. 

Another of many unsolved diophantine equations is 

though Schinzel & Sierpinski have found all solutions for which x - Y = 2z. 
Cao Zhen-Fu has shown that the only solutions satisfying x - y = lz for 
other values of l ~ 30 are lxi = lyl or Izl = 1, and Wang Yan Bin that these 
are the only solutions with x - y = z2 + 1. 

Kashihara has shown that all solutions of 

(x2 - 1)(y2 - 1) = (Z2 - 1) 

can be derived from the trivial solutions (n, 1, 1) and (1, n, 1). 
For the equation x2 - 1 = y2(Z2 - 1), Mignotte has shown that if z is 

large, then the greatest prime factor of y is at least cln In y. 
Ron Graham has observed that the diophantine equations 

each have the solutions x = 0, 1, 2, 3, 6 and 91. Is this merely an example 
ofthe Strong Law of Small Numbers? Evidently so! In a forthcoming paper 
Stroeker & de Weger find that Graham's equation has one pair and five 
quadrupies of solutions. They note that it is unfair to count the solutions 
x = 0 and x = 1 of the Ramanujan-Nagell equation as separate, while 
'forgetting' the solutions x = -1, -2, -5, -90. 

Baragar has shown that the equation 

x(x + l)y(y + 1) = z(z + 1), 

studied by Katayama, is equivalent to a Markoff type equation (see D12) 

x2 + y2 + z2 = 2xyz + 5 

and has counted the number of solutions of size less than N. 

Cao Zhen-Fu, A generalization of the Schinzel-Sierpinski system of equations 
(Chinese; English summary), J. Harbin Inst. Teeh., 23(1991) 9-14; MR 
93b:l1026. 

Kenji Kashihara, The Diophantine equation x2 - 1 = (y2 -1)(z2 - 1) (Japanese; 
English summary), Res. Rep. Anan College Teeh. No. 26(1990) 119-130; 
MR 91d:ll025. 

Shin-ichi Katayama & Kenji Kashihara, On the structure of the integer solutions 
of Z2 = (x2 _1)(y2 -1) - a, J. Math. Tokushima Univ., 24(1990) 1-11; MR 
93c:ll013. 

Maurice Mignotte, A note on the equation x2 -1 = y2(Z2 -1), C. R. Math. Rep. 
Aead. Sei. Canada, 13(1991) 157-160; MR 92j:ll026. 
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A. Schinzel & W. Sierpinski, Sur l'equation diophantienne (x2 - 1)(y2 - 1) = 
[((y - X)/2)2 -1]2, Elern. Math., 18(1963) 132-133; MR 29 #1180. 

Wang Yan-Bin, On the Diophantine equation (x2 _1)(y2 -1) = (Z2 _1)2 (Chinese, 
English summary), Heilongjiang Daxue Ziran Kexue Xuebao, 1989 no. 4 84-
85; MR 91e:11028. 

D24 Surn equals product. 

For k > 2 the equation al a2 ... ak = al + a2 + ... + ak has the solution 
al = 2, a2 = k, a3 = a4 = ... = ak = 1. Schinzel showed that there is no 
other solution for k = 6 or k = 24. Misiurewicz has shown that k = 2, 3, 
4, 6, 24, 114 (misprinted as 144 in Elern. Math. and in the first edition of 
this book), 174 and 444 are the only k < 1000 for which there is exactly 
one solution. 

This problem seems first to have been asked by Trost, arising from the 
solution of al a2 ... ak = al + a2 + ... + ak = 1 in rationals. For k = 3 this is 
due to Sierpinski; for k > 3 to Schinzel. Editorial comment in Amer. Math. 
Monthly, extended the result to k :::; 10000 and M. L. Brown gave necessary 
and sufficient conditions on k and extended the search to k :::; 50000. 

M. L. Brown, On the diophantine equation l: X, = TI X" Math. Cornput., 
42(1984) 239-240; MR 85d:11030. 

M. Misiurewicz, Ungelöste Probleme, Elern. Math., 21(1966) 90. 
E. P. Starke & others, Solution to Problem E2262 [1970, 1008] & editorial com

ment, Arner. Math. Monthly, 78(1971) 1021-1022. 
E. 'frost, Ungelöste Probleme, Nr. 14, Elern. Math., 11(1956) 134-135. 

D25 Equations involving factorial n. 

Are the only solutions of n! + 1 = x2 given by n = 4, 5 and 7? Overholt 
has related this problem to a conjecture of Szpiro. Erdös & Obllith dealt 
with the equation n! = xP ± yP with x .1 y and p > 2. For the case p = 2 
with the plus sign, see Leech's remark at D2; and for the minus sign, split 
n! into two even factors: 4! = 52 - 12 = 72 - 52; 5! = 112 - 12 = 132 - 72 = 
172 -132 = 312 - 292. The number ofsolutions is ~d(n!/4). 

Simmons notes that n! = (m - 1)m(m + 1) for (m, n) = (2,3), (3,4), 
(5,5) and (9,6) and asks if there are other solutions. More generally he asks 
if there are any other solutions of n! + x = x k • This is a variation on the 
question of asking for n! to be the product of k consecutive integers in a 
nontrivial way (k i- n + 1 - j!). Compare B23. 

In a 93-05-07 letter to Ron Graham, Nobuhisa Abe states that 
x(x + 1)··· (x + k) = y2 - 1 has the unique solution (x, y) = (2,71) for 
k = 5 and no solutions for k = 7 or 11. 
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Berend & Osgood have shown that the set of n for which the equation 
P(x) = n! has an integer solution x has density zero if P(x) is a polynomial 
of degree ~ 2 with integer coefficients. 

Daniel Berend & Charles F. Osgood, On the equation P(x) = n! and a question 
of Erdös, J. Number Theory, 42(1992) 189-193; MR 93e:11016. 

B. Brindza & P. Erdös, On some Diophantine problems involving powers and 
factorials, J. Austral. Math. Soc. Sero A 51(1991) 1-7; MR 92i:11036. 
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Soc., 25(1993) 104; MR 93m:11026. 
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diophantine equation, Gomm. Pure Appl. Math., 26(1973) 313-325; MR 50 
#12915. 

Gustavus J. Simmons, A factorial conjecture, J. Recreational Math., 1(1968) 38. 

D26 Fibonacci numbers of various shapes. 

Stark asks which Fibonacci numbers (see A3) are half the difference or 
sum of two cubes. This is related to the problem of finding all complex 
quadratic fields of dass number 2. Examples: 1 = ~(13+ 13),8 = ~(23+23), 
13 = ~(33-13). Antoniadis has related all such fields to solutions of certain 
diophantine equations, and solved them all but two, which were later settled 
by de Weger. 

Cohn showed that the only square Fibonacci numbers are 0, 1 and 144, 
and Luo Ming confirmed Vern Hoggatt's conjecture that the only triangular 
ones, Le. ofthe form ~m(m + 1), are 0, 1, 3, 21 and 55, and later that the 
only such Lucas numbers are 1, 3 and 5778. 
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D27 Congruent numbers. 

Congruent numbers are perhaps confusingly named; they are related to 
pythagorean triangles and have an ancient history. Several examples (5, 6, 
14, the seventeen entries CA in Table 7, and ten more greater than 1000) 
are in an Arab manuscript more than a thousand years ago. But it is only 
for the last ten years, since the work of Tunnell, that we have a reasonably 
complete understanding of them. They are those integers a for which 

have simultaneous integer solutions. Part of the fascination is the often in
ordinate size of the smallest solutions. For example, a = 101 is a congruent 
number and Bastien gave the smallest solution: 

x = 2015242462949760001961 

z = 2339148435306225006961 

y = 118171431852779451900 

t = 1628124370727269996961 

and in spite of improved computing techniques and machines, it may still be 
some time before some other of the more recalcitrant examples are discov
ered. Some other large specimens, found by J. A. H. Hunter, M. R. Buckley 
and K. Gallyas, are given in the first edition of this book. 

Congruent numbers are equivalently defined as those a for which there 
are solutions of the diophantine equation 
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Table 1. Congruent (C) and Noncongruent (N) Numbers less than 1000. The 
entry for a = 40c+r is in column c and row r. 

c 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 c 

: NB Cl 0 0 CG N9 NI NI N9 0 NI 0 NJ NI CG NI NI N9 C& Cl 0 0 NI N9 0 ~ 
2~~m~D~D~m~m=~Dm=mmDm~~D~~2 
3mmm_mmDm~DmmmmmDmmrummmmmD3 
400000000000000000000000004 
5~D=D==D~DruD~ruD~D~ruDD~DruD~5 
6~~~D~~~~~~ru~D~~ru=DD~=D~~=6 
7 C7 C7 CG Q7 C7 0 CJ C& CJ C7 CJ CJ C7 C& 0 C7 C7 CJ C7 CJ CJ 0 C7 0 C7 7 
800 0 U 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 

9 0 0 NI N9 0 N9 N9 0 NJ 0 NI NI N9 0 NI C& N9 C& 0 NI NI N9 C& NI NJ 9 
10 NX 0 0 NL N& CA 0 NL CA NL CG 0 0 NL NJ NL 0 NJ NJ NJ 0 0 CG NJ NJ 10 
11 N3 NB NB N3 0 N3 N3 CG N3 CG NJ NJ N3 0 N3 NJ CG N3 C& NJ N3 NJ 0 0 N3 11 
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 
13 C5 C5 CG CJ C5 CJ CJ C5 0 C5 CJ CJ CJ C& CL C5 C5 0 C5 C5 C& C5 CL CL CJ 13 
14 C6 0 C6 C6 CG C6 C6 0 C6 CJ 0 C6 CJ CJ C& C6 CJ C6 C6 0 C& CJ CJ C6 C& 14 
15 CA CG CG 0 0 C& CG CJ CJ 0 CJ C& 0 C& 0 C& CJ CJ 0 0 CJ 0 CJ C& 0 15 
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 

17 NI N9 NI Cl N9 NJ Cl 0 NI NJ N9 Cl NJ N9 NI NI 0 NJ N9 C& N9 NI NT NI NI 17 
18 0 NX 0 CG N2 NX NJ NX 0 0 NJ NX NJ NX 0 NJ C& NX 0 NX N2 NJ NT NT NJ 18 
19 N3 N3 0 N3 N3 C& NJ CG NJ N3 N3 0 N3 0 NJ N3 N3 NJ N3 NJ 0 N3 NJ NT NJ 19 
W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 W 
21 CA C5 C5 C& C5 CA 0 CJ CJ CJ C5 C5 CJ C5 CJ 0 C5 C5 CG CJ C5 CJ C& C5 0 21 
22 C6 C6 CG C6 C& CJ C6 C6 0 C6 C6 CG C6 C6 C& C6 C6 0 CJ CJ CJ C6 CJ CJ C6 22 
23 C7 0 C7 C& CJ C7 C7 CJ 0 C7 0 C7 C7 CL CG CL C& CJ C7 0 C7 C7 C& C& C7 23 
~ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ~ 

~D~m=mD=mmmD=~mDDmmmmDm~D~~ 
u~~~m_~mD~~~mm~~mD~~mm~mmmu 
HDmmD_mmmmDmmDmm~mmDmmDmm~H 
~ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ~ 
29 C5 CG C5 C5 0 C5 C5 CJ C5 C5 CA CJ C5 0 CJ C& C& C5 CJ CJ C5 CJ 0 C& CJ 29 
w~~~D~ruD=D~ru==DruD~~Druru~~DDw 
31 C7 C7 CG C7 C7 CA C7 C7 0 C& C7 CJ C& CJ CJ C7 C& 0 C7 C& CJ CJ C7 C& C7 31 
~ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ~ 

33 N9 NI NI 0 NI NI NJ Cl Cl N9 NI N9 0 NJ NI N9 NI NJ N9 C& 0 0 N9 NI N9 33 
M~~_~~Dm~m~=m~~D~~m~~mmmDmM 
~~D_mmmDDm~mDmmmmDmmmmD~m~~ 
~ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ~ 
D~=D~~ru~~=~ruD=~~D~~~~D~~~~D 
38 C6 CG C6 C6 0 CJ C6 C& C6 C6 CG C6 C& 0 CJ CJ CJ C6 C6 CG C6 C6 0 C6 C6 38 
39 CG C7 C& C& C7 C7 0 C& C7 C& C7 C7 CJ CJ C7 0 CJ C7 CG C& C7 C& C7 C& 0 39 
~ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ~ 

c 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 c 

Dickson's History gives many early references, including Leonardo of 
Pisa (Fibonacci); Genocchi; and Gerardin, who gave 7, 22, 41, 69, 77, the 
twenty Arabic examples and the forty-three entries CG in Table 7. We need 
consider only squarefree values of a; of the 608 such that are less than 1000, 
361 are congruent and 247 are noncongruent. It has long been conjectured 
that squarefree numbers are congruent if they are == 5, 6 or 7 mod 8. This is 
now known to be true [modulo some widely believed conjectures concerning 
elliptic curves]. The entries C5, C7 and C6 in Table 7 are for primes == 5 
or 7 mod 8 and the doubles of primes == 3 mod 8. Bastien observed that 
the following are noncongruent: primes == 3 mod 8; products of two such 
primes; the doubles of primes == 5 mod 8; the doubles of the products of 
two such primes; and the doubles of primes == 9 mod 16; these are the 
respective entries N3, N9, NX, NL and N2 in Table 7. He gave some other 
noncongruent numbers (entries NB, though a = 1 is due to Fermat, and 
many others were known earlier, e.g. to Genocchi) and stated that a was 
noncongruent if it was a prime == 1 mod 8 with a = b2 + c2 and b + c a 
nonresidue (see F5) of a. This accounts for several of the entries NI. 
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Note that the entries 1, 3, 5 and 7 serve as a table of primes in these 
residue classes mod 8. 

Entries C& and N& are from Alter, Curtz & Kubota, and CJ and NJ 
from Jean Lagrange's thesis. 

Ronald Alter, The congruent number problem, Amer. Math. Monthly, 87 (1980) 
43-45. 

R. Alter & T. B. Curtz, A note on congruent numbers, Math. Comput., 28(1974) 
303-305; MR 49 #2527 (not #2504 as in MR indexes); correction 30(1976) 
198; MR 52 #13629. 

R. Alter, T. B. Curtz & K. K. Kubota, Remarks and results on congruent num
bers, Prae. 3rd S.E. Conf. Combin. Graph Theory Comput., Congr. Numer. 
6 (1972) 27-35; MR 50 #2047. 

L. Bastien, Nombres congruents, Intermediaire Math., 22(1915) 231-232. 
B. J. Birch, Diophantine analysis and modular functions, Prae. Bombay Colloq. 

Alg. Geom., 1968. 
J. W. S. Cassels, Diophantine equations with special reference to elliptic curves, 

J. London Math. Soe., 41(1966) 193-29l. 
1. E. Dickson, History 0/ the Theory 0/ Numbers, Vol. 2, Diophantine Analysis, 

Washington, 1920, 459--472. 

A. Genocchi, Note analitiche sopra Tre Sritti, Annali di Sei. Mat. e Fis., 6(1855) 
273-317. 

A. Gerardin, Nombres congruents, Intermediaire Math., 22(1915) 52-53. 

H. J. Godwin, A note on congruent numbers, Math. Comput., 32 (1978) 293-295; 
33 (1979) 847; MR 58 #495; 80c:10018. 

Jean Lagrange, These d'Etat de l'Universite de Reims, 1976. 

Jean Lagrange, Construction d'une table de nombres congruents, Bull. Soc. Math. 
Prance Mem. No. 49-50 (1977) 125-130; MR 58 #5498. 

Paul Monsky, Mock Heegner points and congruent numbers, Math. Z., 204 (1990) 
45--68; MR 91e:11059. 

Paul Monsky, Three constructions of rational points on y2 = X 3 ± NX, Math. 
Z., 209(1992) 445--462; MR 93d:11058. 

L. J. Mordell, Diophantine Equations, Academic Press, London, 1969, 71-72. 

Kazunari Noda & Hideo Wada, All congruent numbers less than 10000, Prae. 
Japan Aead. Sero A Math. Sei., 69(1993) 175-178. 

S. Roberts, Note on a problem of Fibonacci's, Prae. London Math. Soe., 11(1879-
80) 35-44. 

P. Serf, Congruent numbers and elliptic curves, in Computational Number Theory 
(Proe. Conf. Number Theory, Debrecen, 1989), de Gruyter, 1991, 227-238; 
MR 93g:11068. 

N. M. Stephens, Congruence properties of congruent numbers, Bult. London 
Math. Soc., 7(1975) 182-184; MR 52 #260. 

Jerrold B. Tunnell, A classical diophantine problem and modular forms of weight 
3/2, Invent. Math. 72(1983) 323-334; MR 85d:11046. 
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D28 A reciprocal diophantine equation. 

Mordell asked for the integer solutions of 

1 1 1 1 1 - + - + - + - + -- = O. 
w x y z wxyz 

Several papers have appeared, giving parametrie families of solutions. For 
example, Takahiro Nagashima sends solutions to Mordell's equation: 
(w,x,y,z) = (5,3,2,-1), (-7,-3,-2,1), (31,-5,-3,2), 
(1366, -15, 7, -13), (n+ 1, -n, -1, 1) and more generally w = xyz+ 1 with 

x = -2fh3 - &h2 (n - 3) + fh(n - 1- 2&) + 1, 

Y = 2&h2 + fh(n - 3) - f8(n - 1) + 1, 

z = -2&h2 - fh(n - 1) - 1, 

where f, 8 = ±1 independently, but there seems to be no guarantee that 
these four two-parameter families give all solutions. 

Zhang has shown how to obtain all solutions below a given bound, while 
Clellie Oursler and Judith Longyear have sent extensive analyses which 
each give a procedure for finding all solutions. That of Longyear extends 
to the equation I:(l/Xi) + TI(l/Xi) = 0 with nk 3) variables Xi in place 
of Mordell's n = 4. 

Lawrence Brenton & Daniel S. Drucker, On the number of solutions of 
I:;=1 (l/xj) + 1/(Xl'" x s ) = 1, J. Number Theory, 44(1993) 25-29. 

Cao Zhen-Fu, Mordell's problem on unit fractions. (Chinese. English summary) 
J. Math. (Wuhan) 7(1987) 239-244; MR 90a:ll032. 

Sadao Saito, A diophantine equation proposed by Mordell (Japanese. English 
summary), Res. Rep. Miyagi Nat. College Tech. No. 25 (1988) 101-106; II, 
No. 26 (1990) 159-160; MR 91c:ll016-7. 

Chan Wah-Keung, Solutions of a MordeIl Diophantine equation, J. Ramanujan 
Math. Soc., 6(1991) 129-140; MR 93d:ll033. 

Wen Zhang-Zeng, Investigation of the integer solutions of the Diophantine equa
tion l/w+l/x+l/y+l/z+1/wxyz = 0 (Chinese) J. Chengdu Univ. Natur. 
Sei., 5(1986) 89-91; MR 89c:ll051. 

Zhang Ming-Zhi, On the diophantine equation ~ + ; + ~ + ~ + Xy~W = 0, Acta 
Math. Sinica (N.S.), 1(1985) 221-224; MR 88a:ll033. 



E. Sequences of Integers 

Here we are mainly, but not entirely, concerned with infinite sequenceSj 
there is some overlap with sections C and A. An excellent text and source of 
problems is H. Halberstarn & K. F. Roth, Sequences, 2nd edition, Springer
Verlag, New York, 1982. Other references are: 

P. Erdös, A. Sarközi & E. Szemeredi, On divisibility properties of sequences 
of integers, in Number Theory, Colloq. Math. Soc. Janos Bolyai, 2, North
Holland, 1970, 35-49. 

H. Ostmann, Additive Zahlentheorie I, 11, Springer-Verlag, Heidelberg, 1956. 
Carl Pomerance & Andras Sarközi, Combinatorial Number Theory, in R. Gra

ham, M. Grötschel & L. Lovasz (editors) Handbook 0/ Combinatorics, North
Holland, Amsterdam, 1994. 

A. Stöhr, Gelöste und ungelöste Fragen über Basen der natürlichen Zahlenreihe 
1,11, J. reine angew. Math., 194(1955) 40-65,111-140; MR 17, 713. 

Paul '!Uran (editor), Number Theory and Analysis; a collection 01 papers in honor 
0/ Edmund Landau (1877-1938), Plenum Press, New York, 1969, contains 
several papers, by Erdös and others, on sequences of integers. 

We will denote by A = {ai}' i = 1, 2, ... a possibly infinite strictly 
increasing sequence of nonnegative integers. The number of ai which do 
not exceed x is denoted by A(x). By the density of a sequence we will 
mean limA(x)jx, if it exists. 

EI A thin sequence with all numbers equal to a 
member plus a prime. 

Erdös offers $50.00 for a solution of the problem: does there exist a sequence 
thin enough that A(x) < clnx, but with every sufficiently large integer 
expressible in the form p + ai where p is a prime? 

For the analogous problem with squares in place of primes, Leo Moser 
showed that A(x) > (1 + c)..jX for some c > 0, while Erdös showed that 
there was a sequence with A(x) < c..jX. Moser's best value for c was 0.06, 
but this has been improved to 0.147 by Abbott, to 0.245 by Balasubra
manian & Soundarajan, and to 0.273 by Cilleruelo. For the rth powers, 

199 
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Cilleruelo obtains 
Xl-~ 

A(x) > r(2 - ~)r(1 + ~) 
For the problem with powers of two in place of primes, Ruzsa obtained 

the analog of Erdös's result, but it is not known if there is a constant c> 0 
such that every sequence A for which every positive integer is representable 
in the form a + 2k has A(x) > (1 + c) log2 X. 

H. L. Abbott, On the additive completion of sets of integers, J. Number Theory, 
17(1983) 135-143. 

R. Balasubramanian & K. Soundarajan, On the additive completion 
of squares, 11, J. Number Theory,40(1992) 127-129. 

Javier Cilleruelo, The additive completion of kth powers, J. Number Theory, 
44(1993) 237-243. 

P. Erdös, Problems and results in additive number theory, Colloque sur la Theorie 
des Nombres, Bruxelles, 1955, 127-137, Masson, Paris, 1956. 

L. Moser, On the additive completion of sets of integers, Proc. Symp. Pure M ath., 
8(1965) Amer. Math. Soc., Providence RI, 175-180. 

I. Ruzsa, On a problem of P. Erdös, Canad. Math. Bull., 15(1972) 309-310. 

E2 Density of a sequence with l.c.m. of each 
pair less than x. 

What is the maximum value of A(x) if the least common multiple [ai,aj] 
of each pair of members of the sequence is at most x? It is known that 

(9x/8)l/2 :::; maxA(x) :::; (4x)l/2. 

The lower bound is obtained by taking all the numbers from 1 up to 
..jX72 and then the even numbers up to y'2X. 

And how many numbers less than x can we find with the greatest com
mon divisor of any pair < t for a given t? If t < n! +E, the number '" 1l'( n), 
while if t = n!+c, it is '" (1 + c')1l'(n). 

Erdös also asks for bounds on B(x), the smallest number so that any 
subset of [1, x] of cardinality B(x) always contains three members which 
have pairwise the same least common multiple. Perhaps B(x) = o(x). 
Again, let C(x) be the corresponding smallest cardinality, so that there are 
always three numbers with pairwise the same greatest common divisor. No 
doubt 

i., eC1 (lnx)1/2 < C(x) < eC2 (lnx)1/2 ? 

but the best that Erdös has proved is C(x) < X3/ 4 . 

Given a sequence A, al < a2 < ... , Erdös & Szemeredi denote by 
F(A, x, k) the number ofi for which the l.c.m. [aHl, aH2, ... , ai+k] < x, and 
ask if it is t rue that for every € > 0 there is a k for which F(A, x, k) < XE? 
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They proved that F(A, x, 3) < Clx1/ 3lnx for every A, and that there is an 
A for which F(A, x, 3) > C2xl/3ln x for infinitely many x, but they don't 
know if there is an A for which this is true for alt x. 

Graham, Spencer & Witsenhausen ask how dense can a sequence of 
integers be so that {n, 2n, 3n} never occur? 

There is a good bibliography and many unsolved problems in this area 
in the paper of Erdös, S1irközy & Szemeredi. See also the references at 
B24. 

P. Erdös, Problem, Mat. Lapok 2(1951) 233. 
P. Erdös & A. Sarközy, On the divisibility properties of sequences of integers, 

Proc. London Math. Soc. (3), 21(1970) 97-100; MR 42 #222. 
P. Erdös, A. Sarközy & E. Szemeredi, On divisibility properties of sequences of 

integers, in Number Theory Colloq. Janos Bolyai Math. Soc., Debrecen 1968, 
North-Holland, Amsterdam (1970) 35-49; MR 43 #4790. 

P. Erdös & E. Szemeredi, Remarks on a problem of the American Mathematical 
Monthly, Mat. Lapok, 28(1980) 121-124; MR 82c:10066. 

R. L. Graham, J. H. Spencer & H. S. Witsenhausen, On extremal density theo
rems for linear forms, in H. Zassenhaus (ed) , Number Theory and Algebra, 
Academic Press, New York, 1977, 103-109; MR 58 #569. 

E3 Density of integers with two comparable 
divisors. 

Is it true that the density of those integers 
6, 12, 15, 18, 20, 24, 28, 30, 35, 36, 40, 42, 45, 48, 54, 56, 60, 63, 66, 

70,72, ... 
which have two divisors d1 , d2 such that d1 < d2 < 2d1 , is one? Erdös 
has shown that the density exists. There is a connexion with covering 
congruences (F13). Since the first edition this has been solved affirmatively 
by Maier & Tenenbaum. 

P. Erdös, On the density of some sequences of integers, Bult. Amer. Math. Soc., 
54(1948) 685-692; MR 10, 105. 

Helmut Maier & G. Tenenbaum, On the set of divisors of an integer, Invent. 
Math., 76(1984) 121-128; MR 86b:11057. 

E4 Sequence with no member dividing the 
product of r others. 

If no member of the sequence {ai} divides the product of rother terms, 
Erdös shows that 
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where 7r(x) is the number of primes ~ x. If, however, we suppose that the 
products of any number, not greater than r, of the ai are distinct, what is 
maxA(x)? For r ~ 3, Erdös shows 

maxA(x) < 7r(x) + O(x2/3+ E ). 

If r = 1, so that no term divides any other, the sequence is called 
primitive. Zhang has shown that for a primitive sequence whose members 
each contain at most four prime factors, 

(and hence less than 1.64) for n > 1, the sums being taken over all members 
of the sequence up to n and all primes up to n. 

P. Erdös, On sequences of integers no one of which divides the product of two 
others and on some related problems, Inst. Math. Mec. Tomsk, 2(1938) 74-
82. 

P. Erdös, Extremal problems in number theory V (Hungarian), Mat. Lapok, 
17(1966) 135-155. 

P. Erdös, On some applications of graph theory to number theory, Publ. Ramanu
jan Inst., 1(1969) 131-136. 

P. Erdös & Zhang Zhen-Xiang, Upper bound of L l/(a;!ogai) for primitive 
sequences, Prac. Amer. Math. Soc., 117(1993) 891-895. 

Zhang Zhen-Xiang, On a conjecture of Erdös on the sum Lp:$n l/(plogp), J. 
Number Theory, 39(1991) 14-17; MR 92f:11131. 

Zhang Zhen-Xiang, On a problem of Erdös concerning primitive sequences, Math. 
Comput., 60(1993) 827-834; MR 93k:11120. 

E5 Sequence with members divisible by at least 
one of a given set. 

Let D(x) be the number ofnumbers not greater than x which are divisible 
by at least one ai where al < a2 < ... < ak ~ n is a finite sequence. Is 
D(x)jx < 2D(n)jn for all x > n? The number 2 cannot be reduced: for 
example, n = 2al - 1, x = 2al < a2. In the other direction it is known 
that for each E > 0 there is a sequence which does not satisfy the inequality 
D(x)jx > ED(n)jn. 

A. S. Besicovitch, On the density of certain sequences, Math. Ann., 110(1934) 
335-341. 

P. Erdös, Note on sequences of integers no one of which is divisible by any other, 
J. London Math. Soc., 10(1935) 126--128. 
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E6 Sequence with sums of pairs not members of 
a glven sequence. 
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Let nl < n2 < ... be a sequence of integers such that ni+!/ni _ 1 as 
i- 00, and the {nd are distributed uniformly modd for every d; Le., the 
number N(c, d; x) of the ni ~ x with ni == c mod dis such that 

N(c,d;x)/N(l,l;x)-l/d as x-oo 
for each c, 0 ~ c < d, and all d. If al < a2 < ... is an infinite sequence 
for which aj + ak i= ni for any i, j, k then Erdös asks: is it true that the 
density of the aj is less than ~? 

E7 Aseries and a sequence involving primes. 

If Pn is the n th prime, Erdös asks if L:( -l)nn/Pn converges. He notes that 
the series L:(_1)n(n In n)/Pn diverges. 

He also asks if, given three distinct primes and al < a2 < a3 < ... 
are all the products of their powers arranged in increasing order, it is true 
infinitely often that ai and ai+l are both prime powers. And what if we 
use k primes or even infinitely many in place of three? Meyer & Tijdeman 
have asked a similar question for two finite sets Sand T of primes with 
al < a2 < a3 < ... formed from S U T. Are there infinitely many i for 
which ai is a product of powers of primes from S, while ai+1 is a product 
of powers of primes from T? 

ES Sequence with no sum of a pair a square. 

Paul Erdös & David Silverman consider k integers 1 ~ al < a2 < ... < 
ak ~ n such that no sum ai + aj is a square. Is it true that k < n(l + f)/3, 
or even that k < n/3 + 0(1) ? The integers == 1 mod 3 show that if this is 
true, then it is best possible. They suggest that the same quest ion could 
be asked for other sequences instead of the squares. 

Erdös & Graham added to their book at the proof stage that J. P. Mar
sias has discovered that the sum of any two integers 

== 1,5,9,13,14,17,21,25,26,29,30 mod 32 
is never a square mod 32, so k can be chosen to be at least lln/32. This 
is best possible for the modular version of the problem since Lagarias, 
Odlyzko & Shearer have shown that if S ~ Zn and S + S contains no 
square of Zn, then ISI ~ lln/32. 

J. C. Lagarias, A. M. Odlyzko & J. B. Shearer, On the density of sequences of 
integers the surn of no two of which is a square, 1. Arithrnetic progressions, J. 
Combin. Theory Sero A, 33(1982) 167-185; 11. General sequences, 34(1983) 
123-139; MR 85d:ll015ab. 
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E9 Partitioning the integers into classes with 
numerous sums of pairs. 

The conjecture of K. F. Roth, that there masts an absolute constant c 
so that for every k there is an no = no(k) with the following property: 

For n > no, partition the integers not exceeding n into k dasses {a~j)} 
(1 ::; j ::; k); then the number of distinct integers not exceeding n which 
can be written in the form aW + a~;) for some j is greater than cn, has 
been confirmed by Erdös, Sarközy & S6s. 

They also investigate the corresponding problem with products in place 
of sums, where the problem for k = 2 remains open. 

P. Erdös & A. Sarközy, On a conjecture of Roth and some related problems, 11, in 
R. A. Mollin (ed.) Number Theory, Proc. 1st Conf. Canad. Number Theory 
Assoe., Banff 1988, de Gruyter, 1990, 125-138. 

P. Erdös, A. Sarközy & V. T. S6s, On a conjecture of Roth and some related 
problems, I, Colloq. Math. Soc. Janos Bolyai (1992). 

EID Theorem of van der Waerden. Szemeredi's 
theorem. Partitioning the integers into 
classes; at least one contains an A.P. 

The well-known theorem of van der Waerden states that for every I there is a 
number n( h, I) such that if the integers not exceeding n( h, I) are partitioned 
into h dasses, then at least one dass contains an arithmetic progression 
(A.P.) containing I + 1 terms. More generally, given Io, h, ... , Ih-l, there 
is always a dass Vi (0 ::; i ::; h - 1) containing an A.P. of Ii + 1 terms. 
Denote by W(h, I), or more generally W(h; Io, h, ... , Ih-d, the least such 
n(h, I). 

Chvatal computed W(2; 2, 2) = 9, W(2; 2, 3) = 18, W(2; 2,4) = 22, 
W(2; 2, 5) = 32 and W(2; 2, 6) = 46 and Beeler & O'Neil give W(2; 2, 7) = 
58, W(2; 2, 8) = 77 and W(2; 2, 9) = 97. The values W(2; 3, 3) = 35 and 
W(2; 3,4) = 55 were found by Chvatal and W(2; 3, 5) = 73 by Beeler 
& O'Neil. Stevens & Shantaram found W(2; 4, 4) = 178; Chvatal found 
W(3; 2, 2, 2) = 27 and Brown W(3; 2, 2, 3) = 51. Beeler & O'Neil also 
found W(4; 2, 2, 2, 2) = 76. 

Most proofs of van der Waerden's theorem give poor estimates for 
W(h, l). Erdös & Rado showed that W(h, l) > (2lhl )! and Moser, Schmidt, 
and Berlekamp successively improved this to 

W(h, I) > Ihcln hand W(h, I) > hl+1-c.J(I+l) ln(l+l) 
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Moser's bound has been improved for 1 ?: 5 by Abbott & Liu to 

W(h,l) > hc.(Inh)' 

where s is defined by 28 ~ 1 < 28 +1, and Everts has shown that W(h, l) > 
lhl /4(l + 1)2, a result which is sometimes bett er than Berlekamp's. For 
h = 2 SzabO has recently shown that W(2, l) > 21 /l'. All upper bounds 
were 'ackermanic' in size, until Shelah's proof reduced them to 'wowser' -
for an explanation of these terms see the book by Graham, Rothschild & 
Spencer. 

A closely related function, with 1 + 1 = k, is the now famous Tk(n), 
introduced long years ago by Erdös & Thnin: the least T such that the 
sequence 1 ~ a1 < a2 < ... < ar ~ n of T numbers not exceeding n must 
contain a k-term A.P. The best bounds when k = 3 are due to Behrend, 
Roth, and Moser: 

and for larger kRankin showed that 

where s, much as before, is defined by 28 < k ~ 28 +1. 

A big breakthrough was Szemeredi's proof that Tk(n) = o(n) for all 
k, but neither his proof, nor those of Furstenberg and of Katznelson & 
Ornstein (see Thouvenot) give estimates for Tk(n). Erdös conjectures that 

Tk(n) = o(n(lnn)-t) for every t ? 

This would imply that for every k there are k primes in A.P. See A5 for a 
potentially remunerative conjecture of Erdös, which, if true, would imply 
Szemeredi's theorem. 

Another closely related problem was considered by Leo Moser, who 
wrote the integers in base three, n = L ai3i (ai = 0, 1 or 2) and examined 
the mapping of n into lattice points (al, a2, a3, ... ) of infinite-dimensional 
Euclidean space. He called integers collinear if their images are collinearj 
e.g., 35 --t (2,2,0,1,0, ... ),41 --t (2,1,1,1,0, ... ) and 47 --t (2,0,2,1,0, ... ) 
are collinear. He conjectured that every sequence of integers with no three 
collinear has density zero. If integers are collinear, they are in A.P., but not 
necessarily conversely (e.g., 16 --t (1,2,1,0,0, ... ), 24 --t (0,2,2,0,0, ... ) 
and 32 --t (2,1,0,1,0, ... ) are not collinear) so truth of the conjecture 
would imply Roth's theorem that T3(n) = o(n). 

If /3 (n) is the largest number of lattice points with no three in line in 
the n-dimensional cube with three points in each edge, then Moser showed 
that /3 (n) > c3n / y'n. It is easy to see that /3 (n) /3n tends to a limitj is it 
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zero? Chvatal improved the constant in Moser's result to 3/..;rr and found 
the values /3(1) = 2, /3(2) = 6, /3(3) = 16. It is known that /3(4) ~ 43. 

More generally, if the n-dimensional cube has k points in each edge, 
Moser asked for an estimate of fk (n), the maximum number of lattice 
points with no k collinear. It is a theorem of HaIes & Jewett, with appli
cations to n-dimensional k-in-a-row (tic-tac-toe), that for sufficiently large 
n, any partition of the kn lattice points into h dasses has a dass with k 
points in line. This implies van der Waerden's theorem on letting the point 
(ao, al,··., an-l), (0 ~ ai ~ k - 1) correspond to the base k expansion of 
the integer 'E aiki. It is not known whether, for every c and sufficiently 
large n, it is possible to choose ckn / Vn points without induding k in line. 
It is known for some c. Inequality (4) in Riddell's second paper quoted 
below implies that 

so that one can choose a "line-free" set of ckn / Vn points for some c. In the 
other direction he obtains /3(n) ~ 16· 3n - 3 . He acknowledges Leo Moser's 
inspiration in obtaining these results. 

If you use the greedy algorithm to construct sequences not containing 
an A.P. you don't get a very dense sequence, but you do get some interesting 
ones. Odlyzko & Stanley construct the sequence S(m) of positive integers 
with ao = 0, al = m and each subsequent an+l is the least number greater 
than an so that ao, al, ... , an+! does not contain a three-term A.P. For 
example 

S(l): 0, 1,3,4,9, 10, 12, 13, 27, 28, 30, 31, 36, 37, 39, 40, 81, 82, 84, 
85, 90, 91, 93, 94, 108, 109, 111, 112, 117, 118, 120, ... 

8(4): 0, 4, 5, 7, 11, 12, 16, 23, 26, 31, 33, 37, 38, 44, 49, 56, 73, 78, 
80,85,95,99,106,124,128,131,136,143, ... 
If m is apower of three, or twice apower of three, then the members of the 
sequence are fairly easy to describe (write 8(1) in base 3), but for other 
values the sequences behave quite erratically. Their rates of growth seem 
to be similar, but this has yet to be proved. 

The "simplest" such sequence containing no four-term A.P. is 

0, 1, 2, 4, 5, 7, 8, 9, 14, 15, 16, 18, 25, 26, 28, 29, 30, 33, 36, 
48,49,50,52,53,55,56,57,62, ... 

Is there a simple description of this? How fast does it grow? 
If we define the span of a set 8 to be max 8 - min 8, what is the 

smallest span sp(k, n) of a set of n integers containing no k-term A.P.? 
Zalman Usiskin gives the following values: 

n 
sp(3, n) = 
sp(4, n) = 

345 
348 

4 5 

6 
10 
7 

7 
12 
8 

8 
13 
9 

9 
19 
12 

10 
24 

11 
25 
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Abbott notes that it follows from Szemeredi's theorem that for each 
k ~ 3, the sequence {sp(k, n + 1)- sp(k, n)} is unbounded, and asks if it 
contains a bounded subsequence. 

A paper of Alfred Brauer, with a magnificent early bibliography, which 
is relevant to sections EIO to E14, is referred to in F6. 
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E11 Schur's problem. Partitioning integers into 
sum-free classes. 

Schur proved that if the integers less than nIe are partitioned into n dasses 
in any way, then x + y = z can be solved in integers within one dass. 
Let s(n) be the largest integer such that there exists a partition of the 
integers [1, s(n)] inta n dasses with na solutions in any dass. Abbott 
& Moser obtained the lower bound s(n) > (89)n/4-clnn for some c and 
aH sufficiently large n and Abbott & Hanson obtained s(n) > c(89)n/4, 
improving Schur's own estimate of s(n) ~ (3n + 1)/2. This last result is 
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in fact sharp for n = 1, 2 and 3, but it is too low for larger values of n. 
The value s( 4) = 44 was computed by Baumert: for example, the first 44 
numbers may be split into four sum-free classes 

{1,3,5,15,17,19,26,28,40,42,44}, 
{4,6,13,20,22,23,25,30,32,39,41} , 

{2,7 ,8,18,21,24,27,33,37 ,38,43}, 
{9,1O,11,12,14,16,29,31,34,35,36}. 

Later Fredricksen showed that s(5) 2: 157 (see E12 for his example) and 
this improves the lower bound for all subsequent Schur numbers: s(n) 2: 
c(315)n j 5 (n> 5). 

Robert 1rving has slightly improved Schur's upper bound from l n!e J to 
ln!(e- 2~)J. This result also appears in O'Sullivan's Ph.D. thesis (see E28). 
Eugene Levine says that this seems to be the best that can be deduced 
from Jon Folkman's result that the Ramsey number R(3, 3, 3, 3) ::; 65. 
Also, Schinzel notes that the result ascribed to 1rving was attributed by 
the latter to Earl GIen Whitehead. 

Denote by v = O'(m, n) the least integer v such that any partition of 
{I, 2, ... , v} into n subsets has apart containing ab ... , am (not neces
sarily distinct) which satisfy al + ... + am-l = a m , Le., s(n) = 0'(3, n). 
Beutelspacher & Brestovansky note that O'(m,l) = m - 1 and 0'(2, n) = 1 
and prove that 0'(m,2) = m2 - m - 1. They exhibit 3-sumfree 6- and 7-
partitions that show that 0'(3,6) 2: 476 & 0'(3,7) 2: 1430. Hence 0'(3, n) 2: 
!(2859·3n- 7 +1) for n 2: 7. They also define and investigate Schur numbers 
of arithmetic progressions. 

E. & G. Szekeres and Schönheim have considered what Bill Sands calls 
an un-Schur problem. Call a partition of the integers [1, n] into three classes 
admissible ifthere is no solution to x+y = z with x, y, z in distinctclasses. 
There is no admissible partition with the size of each dass > ~n. 

1s it true that if the integers are split into r dasses, then some dass 
contains three distinct integers x, y, z satisfying ~ + i = ~? T. C. Brown 
has verified this for r = 2. 
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E12 The modular version of Schur's problem. 

A similar problem to Schur's was considered by Abbott & Wang. Let t(n) 
be the largest integer m so that there is a partition of the integers from 1 
to m into n dasses, with no solution to the congruence 

x + Y == z mod (m + 1) 

in any dass. Clearly t(n) ~ 8(n), where 8(n) is as in Schur's problem (EU), 
but for n = 1, 2 or 3, we have equality, t(l) = 8(1) = 1, t(2) = 8(2) = 4, 
t(3) = 8(3) = 13. Indeed, the only three partitions of [1,13] into three sets 
satisfying the sum-free condition, 

{1,4,10,13} {2,3,11,12} {5,6,8,9} 

(with 7 in any of the three sets) all satisfy the seemingly more restric
tive congruence-free condition, modulo 14, while Baumert's example (EU) 
shows only one failure: 33 + 33 == 21 mod 45 in the second set. In fact 
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Baumert found 112 ways of partitioning [1,44] into four sum-free sets, and 
some of these are sum-free mod 45, so t(4) = 44. An example is 

{±1, ±3, ±5, 15, ±17, ±19}, {±2, ±7, ±8, ±18, ±21} 

{±4, ±6, ±13, ±20, ±22, 30}, {±9, ±1O, ±11, ±12, ±14, ±16}. 

Abbott & Wang obtained the inequality 

f(nl + n2) 2: 2f(ndf(n2) 

which holds for f(n) = 8(n) - ~ and leads to the same lower bound that 
Schur obtained for his problem, t( n) 2: (3n + 1) /2. Indeed, they obtain 
evidence that t(n) = 8(n). Moreover, the example of Fredricksen 

±{1,4,10,16,21,23,28,34,40,43,45,48,54,60}, 

±{2,3,8,9, 14, 19,20,24,25,30,31,37,42,47,52,65, 70}, 

±{5,11, 12, 13, 15,29,32,33,35,36,39,53,55,56,57,59, 77, 79}, 

±{6,7,17,18,22,26,27,38,41,46,50,51,75}, 

±{44,49,58,61,62,63,64,66,67,68,69,71,72,73, 74, 76, 78}, 

which shows that 8(5) 2: 157 is also sum-free mod 158 so that t(5) 2: 157 
and t(n) > c(315)n/5 as well. 

Alon & Kleitman call a subset A of a commutative group sum-free 
if no sum of two elements of A is in A, (A + A) nA =0, and they show 
that every set of n nonzero elements of such a group contains a sum-free 
subset of cardinality > ~n. That ~ is best possible follows from a result of 
Rhemtulla & Street, though it can be improved for particular groups. They 
also show that any set of n nonzero integers contains a sum-free subset of 
cardinality > ~n, where ~ cannot be replaced by ~~. Füredi notes that the 
set {l,2,3,4,5,6,8,9,1O,18} shows that it cannot be replaced by ~: is ~ best 
possible? 

Erdös lets f(n) be the smallest integer for which the integers less than 
n can be partitioned into f(n) dasses so that n is not the sum of dis
tinct members of the same dass. For example, f(11) = 2, because of 
the partition {I, 3, 4, 5, 9}, {2, 6, 7, 8, 10}, but f(12) = 3. Erdös can prove 
f(n) < n 1/ 3 /lnn but is unable to show that f(n) > n 1/ 3-€. 
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E13 Partitioning into strongly sum-free classes. 

'I\min has shown that if the integers [m, 5m + 3J are partitioned into two 
classes in any way, then in at least one of them the equation x + y = z is 
solvable with x i- y, and that this is not true for the integers [m, 5m + 2J. 
The uniqueness of the partition of [m,5m + 2J into two sum-free sets has 
been demonstrated by Zmim. 

'I\mm also considered the problem where x, y are not necessarily dis
tinct. Define s(m, n) as the least integer s such that however the interval 
[m, m + sJ is partitioned into n classes, one of them contains a solution of 
x + y = z. His result corresponding to the first problem is s(m, 2) = 4m. 
Clearly s(l, n) = s(n) - 1, where s(n) is as in EU, and Irving's result im
plies that s(m,n) ~ mln!(e- 214)-lJ. Abbott & Znam (see EU) indepen
dently noted that s(m, n) 2: 3s(m, n-l)+m so that s(m, n) 2: m(3n -l)/2. 

Abbott & Hanson call a class strongly sum-free if it contains no 
solution to either of the equations x + y = z or x + y + 1 = z. They 
show that if r(n) is the least r such that however [1, rJ is partitioned into 
n classes, one of them contains such a solution, then 

r(m + n) 2: 2r(n)s(m) - r(n) - s(m) + 1. 

They used this to improve the lower bound for s(m, n)j their method, with 
Fredericksen's example, now gives s(m,n) > cm(315)n j 5. 

S. Znam, Megjegyzesek Thran P81 egy publik81atlan eremenyehez, Mat. 
Lapok, 14 (1963) 307-310. 

E14 Rado's generalizations of van der Waerden's 
and Schur's problems. 

Rado has considered a number of generalizations of van der Waerden's and 
Schur's problems. For example he shows that for any natural numbers a, 
b, c, there is a number u so that however the numbers [1, uJ are partitioned 
into two classes, there is a solution ofax + by = cz in at least one of the 
classes. He gives a value for u, but, as in Schur's original problem, this is 
not best possible. For instance, with 2x+y = 5z, the theorem gives u = 20, 
whereas it is true even for u = 15, though not for any smaller value of u: 
neither of the sets 

{1,4,5,6,9,11,14} {2,3,7,8, 10, 12, 13} 

contains a solution of 2x + y = 5z. If we are allowed three sets, then 45 is 
the least value for u, since the three sets 

{1,4,5,6,9,11,14,16,19,20,21,24,26,29,31,34,36,39,41,44}, 
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{2,3,7,8,10,12,13,15,17,18,22,23,27,28,32,33,37,38,42,43}, 
{6,7,8,9,25,30,35,40} 

contain all the numbers [1,44], even with 6, 7, 8 and 9 duplicated. 
Rado called the equation 2:= aiXi = 0, where the ai are nonzero integers, 

n-fold regular if there is a number u(n), which we can assume to be min
imal, such that however the interval [1, u(n)] is partitioned into n classes, 
at least one class contains a solution to the equation. He called it regular 
if it was n-fold regular for all n, and showed that an equation was regular 
just if 2:= aj = 0 for some subset of the ai. For example, if al = a2 = 1 and 
a3 = -1, we have Schur's original problem with u(n) = s(n). Saue and 
Abbott considered the problem of finding lower bounds for u(n); see EIO 
and EIl for references. 

The example with al = 2, a2 = 1, a3 = -5 is not regular, since, 
although we have seen that it is both 2-fold and 3-fold regular, it is not 
4-fold regular. For, put every number 5k l, where 5 t l, into just one of four 
classes, according as k is even or odd, and l is == ±1 or ±2 mod 5. It can be 
verified that none of these four classes contains a solution of 2x + y = 5z. 

Rado asked if there exist, for every k, equations which are k-regular, 
but not (k + l)-regular. 

For the equations 2XI + X2 = 2X3 and Xl + X2 + X3 = 2X4, Saue, 
Abbott, and Abbott & Hanson obtained successively better lower bounds, 
culminating in u(n) > c(12)n/3 and c(1O)n/3 respectively. 

Vera Sos asks for the maximum size of subset of [1, n] such that Rado's 
equation has no solution in the subset. For example if al = a2 = 1 and 
a3 = -2, the answer is in the interval [nexp( -vln n), nj(ln n)"]. If al = 
a2 = 1 and a3 = a4 = -1, we have a Sidon set (compare C9) and the 
answer is ~ y'n. If al = a2 = 1 and a3 = -1, the answer is nj2. It is 
known more generally that the answer is o( n) just if Xl = X2 = ... = 1 is 
a solution of Rado's equation. Can the answer ever be comparable to n" 
with ~ < 0: < 1? 

Compare problems ElO-14 with CI4-16. 

Walter Deuber, Partitionen und lineare Gleichungssysteme, Math. Z., 133 (1973) 
109-123. 

R. Rado, Studien zur Kombinatorik, Math. Z., 36(1933) 424-480. 
E. R. Williams, M.Sc. thesis, Memorial University, 1967. 

EI5 A recursion of GÖbel. 

F. Gäbel has remarked that the recursion Xo = 1, 

n = 1,2, ... 
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[or, for n > 0, (n + I)Xn+l = xn(xn + n)] yields integers 

Xl = 2,3,5,10,28,154,3520,1551880,267593772160, ... 

for a long time, but Hendrik Lenstra found that X43 was not an integer! 
The corresponding sequence with cubes in place of squares holds out 

as far as XS9. Henry Ibstedt has made extensive calculations, for various 
powers k and various initial values ao. The table shows the rank of the 
first noninteger member of the sequence 

k 2 3 4 5 6 7 8 9 10 11 
Xl = 2 43 89 97 214 19 239 37 79 83 239 
Xl = 3 7 89 17 43 83 191 7 127 31 389 
Xl = 4 17 89 23 139 13 359 23 158 41 239 
Xl = 5 34 89 97 107 19 419 37 79 83 137 
Xl = 6 17 31 149 269 13 127 23 103 71 239 
Xl = 7 17 151 13 107 37 127 37 103 83 239 
Xl = 8 51 79 13 214 13 239 17 163 71 239 
Xl = 9 17 89 83 139 37 191 23 103 23 169 
Xl = 10 7 79 23 251 347 239 7 163 41 239 
Xl = 11 34 601 13 107 19 478 37 79 31 389 

Raphael Robinson has observed that, in contrast to Göbel's sequence, 
the recurrence 

XnXn-k = aXn-pxn-k+p + bXn-qXn-k+q + cXn-rXn-k+r 

appears to generate integers from the starting values Xo = Xl = ... = Xk = 
1 for any integers a :::: 0, b :::: 0, C :::: 0, p :::: 1, q :::: 1, r :::: 1, k such that 
p+q+r = k. 

David Gale, Mathematical Entertainments, Math. Intelligencer, 13(1991) No. 1, 
40-43. 

Henry Ibstedt, Same sequences of large integers, Fibonacci Quart., 28(1990) 200-
203; MR 91h:11011. 

Janice L. Malauf, An integer sequence from a rational recursion, Discrete Math., 
110(1992) 257-26l. 

Raphael M. Robinson, Periodicity of Somos sequences, Proc. Amer. Math. Soc., 
116(1992) 613-619; MR 93a:11012. 

Michael Somos, Problem 1470, Crux Mathematicorum, 15(1989) 208. 

EI6 Collatz's sequence. 

When he was a student, L. Collatz asked if the sequence defined by an+l = 
a n /2 (an even) , an+! = 3an + 1 (an odd) is tree-like in structure, apart 
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from the cycle 4,2, 1,4, ... (Figure 16) in the sense that, starting from any 
integer al, there is a value of n for which an = 1. This has been verified 
for all al ~ 2 . 1012 and for many larger numbers. Eliahou has shown that 
any nontrivial cycle has period at least 17087915. 

Figure 16. 1s the Collatz Sequence Tree-like? 

If 3an + 1 is replaced by 3an - 1 (or if we allow negative integers) then 
it seems likely that any sequence concludes with one of the cycles {1,2}, 
{5,14,7,20,10} or 

{17 ,50,25, 74,37,11O,55,164,82,41,122,61,182,91,271,136,68,34}. 
This is true für all al :::; 108. 

David Kay and others define the sequence more generally by an+! = 
an/p if pln and an+l = anq + r if p f an and asks if there are numbers p, 
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q, r for which the problem can be settled. For (p,q,r) = (2,5,1) or (2,7,1) 
it certainly seems very plausible that any sequence will increase rapidly, if 
erratically, but it seems to be just as hard to prove anything as it is for the 
original problem. The literature is enormOUSj would-be solvers are urged 
to study carefully the writings of Lagarias. 

Define f (n) to be the largest odd divisor of 3n + 1. Zimian asked if 

m m rr ni = rr f(ni) 
i=l i=l 

holds for any (multi )set {ni} of integers ni > 1. Erd8s found that 

65 . 7 . 7 . 11 . 11 . 17 . 17 . 13 = 49 . 11 . 11 . 17 . 17 . 13 . 13 . 5. 

CaU an integer n self-contained if n divides fk(n) for some k ~ 1. If 
this happens and if the Collatz sequence n* = fk(n)/n reaches 1, then the 
set 

{n, f(n), ... , fk-l(n), n*, f(n*), ... , I} 

is a set such as the above. A computer search for n :::; 104 yielded five 
self-contained integers: 31, 83, 293, 347 and 671. 

These mappings are not one-to-onej you can't retrace the history of a 
sequence, since there is often no unique inverse. 

J.-P. Allouche, Sur la conjecture de "Syracuse-Kakutani-Collatz," Seminaire de 
Theorie des Nombres, 1978/79, Exp. No. 9, Talence, 1979; MR 81g:10014. 

David Applegate & Jeffery C. Lagarias, Density bounds for the 3x + 1 problem, 
Abstract 882-11-10, Abstracts Amer. Math. Soc., 14(1993) 414. 

Michael Beeler, William Gosper & Rich Schroeppel, Hakmem, Memo 239, Arti
ficial Intelligence Laboratory, M.I.T., 1972, p. 64. 

Daniel J. Bernstein, A noniterative 2-adic statement of the 3N + 1 conjecture, 
Proc. Amer. Math. Soc., (1993). 

David Boyd, Which rationals are ratios of Pisot sequences? Canad. Math. Bull., 
28(1985) 343-349; MR 86j:11078. 

R. E. Crandall, On the "3x + I" problem, Math. Comput., 32(1978) 1281-1292; 
MR 58 #494. 

J. L. Davidson, Some comments on an iteration problem, Proc. 6th Manitoba 
Conf. Numerical Math., 1976, Congressus Numerantium, 18(1977) 155-159. 

S. Eliahou, The 3x + 1 problem: new lower bounds on nontrivial cycle lengths, 
Discrete Math., 118(1993) 45-56. 

C. J. Everett, Iteration of the number-theoretic function f(2n) = n, 
f(2n + 1) = 3n + 2, Advances in Math., 25(1977) 42-45; MR 56 #15552. 

P. Filipponi, On the 3n + 1 problem: something old, something new, Rend. Mat. 
Appl.(7) 11(1991) 85-103; MR 92i:1l031. 

L. E. Garner, On the Collatz 3n+1 algorithm, Proc. Amer. Math. Soc., 82(1981) 
19-22; MR 82j:l0090. 

Lynn E. Garner, On heights in the Collatz 3n + 1 problem, Discrete Math., 
55(1985) 57-64; MR 86j:11005. 
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E. Heppner, Eine Bemerkung zum Hasse-Syracuse-Algorithmus, Arch. Math. 
(BaseQ, 31(1977/79) 317-320; MR 80d:10007. 

I. N. Herstein & I. Kaplansky, Matters Mathematical, 2nd ed., Chelsea, 1978, 
pp. 44-45. 

David C. Kay, Pi Mu Epsilon J., 5(1972) 338. 

I. Korec & S. Znam, A note on the 3x + 1 problem, Amer. Math. Monthly, 
94(1987) 771-772. 

I. Krasikov, How many numbers satisfy the 3x+ 1 conjecture? Internat. J. Math. 
Math. Sei., 12(1989) 791-796; MR 90k:ll013. 

Jeffrey C. Lagarias, The 3x + 1 problem and its generalizations, Amer. Math. 
Monthly, 92(1985) 3-23, MR 86i:ll043. 

Jeffrey C. Lagarias, The set of rational cycles for the 3x + 1 problem, Acta A rith., 
56(1990) 33-53, MR 9li:ll024. 

J. C. Lagarias, H. A. Porta & K. B. Stolarsky, Asymmetrie tent map expansions 
I: eventually periodie points, J. London Math. Soc., 47(1993) 542-556. 

Jeffrey C. Lagarias & A. Weiss, The 3x+ 1 problem: two stochastie models, Ann. 
Appl. Probab., 2(1992) 229-26l. 

K. R. Matthews & A. M. Watts, A generalization of Hasse's generalization of the 
Syracuse algorithm, Acta Arith., 43(1984) 167-175; MR 85i:ll068. 

K. R. Matthews & A. M. Watts, A Markov approach to the generalized Syracuse 
algorithm, Acta Arith., 45(1985) 29-42; MR 87c:ll071. 

Herbert Möller, Über Hasses Verallgemeinerung der Syracuse-Algorithmus (Kaku
tani's problem), Acta Arith., 34(1978) 219-226; MR 57 #16246. 

Helmut Müller, Das "3n + l"-Problem, Mitt. Math. Ges. Hamburg, 12(1991) 
231-25l. 

Daniel A. Rawsthorne, Imitation of an iteration, Math. Mag., 58(1985) 172-176; 
MR 86i:4000l. 

J. W. Sander, On the (3N + l)-conjecture, Acta Arith., 55(1990) 241-248; MR 
91m:ll052. 

J. Shallit, The "3x+ I" problem and finite automata, Bull. Europ. Assoe. Theor. 
Comput. Sei., 46(1991) 182-185. 

Ray P. Steiner, On the "Qx + 1 problem", Q odd, Fibonacci Quart., 19(1981) 
285-288; 11, 293-296. 

Riho Terras, A stopping time problem on the positive integers, Acta Arith., 
30(1976) 241-252; MR 58 #27879 (and see 35(1979) 100-102; MR 80h:10066). 

Han Vardi, Computational Recreations in Mathematica©, Addison-Wesley, Red
wood City CA, 1991, Chap. 7. 

G. Venturini, Iterates of number-theoretic functions with periodic rational coef
ficients (generalization of the 3x + 1 problem), Stud. Appl. Math. 86(1992) 
185-218; MR 93b:ll102. 

Stan Wagon, The Collatz problem, Math. Intelligencer, 7(1985) 72-76. 

Masaji Yamada, A convergence proof about an integral sequence, Fibonacci 
Quart., 18(1980) 231-242; see MR 82d:10026 for errors. 
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E17 Permutation sequences. 

The situation is different, though no more clear, in the case of permu
tation sequences. A simple example, probably the inverse of Collatz's 
original problem (see EI6 and Lagarias's article cited there), is 

an+1 = 3an/2 (an even), 

or, perhaps more perspicuously, 

an+! = l(3an + 1)/4J (an odd), 

2m --+ 3m 4m -1--+ 3m-l 4m+ 1--+ 3m+ 1 

from which it is clear that the inverse operation works just as weH. So 
the resulting structure consists only of disjoint cycles and doubly infinite 
chains. It is not known whether there is a finite or infinite number of each 
of these, nor even whether an infinite chain exists. It is conjectured that 
the only cycles are {I}, {2,3}, {4,6,9,7,5} and 

{44,66,99, 74,111,83,62,93,70,105, 79, 59}. 

Mike Guy, with the help of TITAN, showed that any other cycles have 
period greater than 320. What is the status of the sequence containing the 
number 8? 

... , 97, 73, 55, 41, 31, 23, 17, 13, 10, 15, 11, 8, 
12,18,27,20,30,45,34,51,38,57,43,32,48,72, ... 

Do the numbers 8, 14, 40, 64, 80, 82, 104, 136, 172, 184, 188, 242, 256, 
~4,~0,~6,3~,M8,3~,~6,G4,4n,~6,~6~0,W8,~2,M8, 

640, 652, 670, 688, 692, 712, 716, 752, 760, 782, 784, 800, 814, 824, 832, 
860, 878, 904, 910, 932, 964, 980, ... each belong to aseparate sequence? 

There are some intriguing paradoxes: as you go "forward" you multiply 
by 3/2 if the current number is even, and by about 3/4 if it's odd - and 
get an erratic "pseudo-GP" of common ratio 3/VS ::::i 1.060660172. On 
the other hand, as you go "backward" you multiply by 2/3 if the current 
number is a multiple of 3, and by about 4/3 otherwise - a "pseudo-GP" of 
common ratio 321/ 3 /3::::i 1.058267368. These two numbers should be recip
rocal! We have a sort of discrete analog of an everywhere non-differentiable 
function. The "derivative" on the right is positive; that on the left is neg
ative. Note that, when going "forwards" each successor of an even number 
is a multiple of 3 - half the numbers are multiples of three! 

J. H. Conway, Unpredictable iterations, in Prac. Number Theory Gonf., Boulder 
CO, 1972, 49-52; MR 52 #13717. 

David Gale, Mathematical Entertainments, Math. Intelligencer, 13(1991) No. 3, 
53-55. 

G. Venturini, Iterates of number theoretic functions with periodic rational coef
ficients (generalization of the 3x + 1 problem), Stud. Appl. Math., 86(1992) 
185-218. 
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E18 Mahler's Z-numbers. 

Mahler considered the following problem: given any real number a, let r n 

be the fractional part of a(3/2)n. Do there exist Z-numbers, for which 
o ~ rn < ! for all n? Probably not. Mahler shows that there is at most 
one between each pair of consecutive integers, and that, for x large enough, 
at most xo. 7 less than x. Flatto has improved on Mahler's results, but the 
problem remains unsolved. 

A similar quest ion is: is there a rational number r / s (s =I 1) such that 
L(r/s)n J is odd for all n? Tijdeman proved that for every odd integer r > 3, 
there are real numbers a such that the fractional part of a(r/2)n is in [O,!) 
for all n. 

Littlewood once remarked that it was not known that the fractional 
part of en did not tend to 0 as n - 00. 

Leopold Flatto, Z-numbers and ß-transformations, Symbolic Dynamics and its 
Applications, Contempomry Math., 135, Amer. Math. Soc., 1992, 181-20l. 

K. Mahler, An unsolved problem on the powers of 3/2, J. Austral. Math. Soc., 
8(1968) 313-321; MR 37 #2694. 

R. Tijdeman, Note on Mahler's ~-problem, Kongel. Norske Vidensk. Selsk. Skr., 
16(1972) 1-4. 

E 19 Are the integer parts of the pöwers of a 
fraction infinitely often prime? 

Forman & Shapiro have proved that infinitely many integers of the form 
L(4/3)n J and also ofthe form L(3/2)n J are composite. A. L. Whiteman con
jectures that these two sequences also each contain infinitely many primes. 
The method appears not to work for other rationals. 

W. Forman & H. N. Shapiro, An arithmetic property of certain rational powers, 
Comm. Pure Appl. Math., 20(1967) 561-573; MR 35 #2852. 

E20 Davenport-Schinzel sequences. 

Form sequences from an alphabet [1, n] of n letters such that there are no 
immediate repetitions ... aa ... and no alternating subsequences 

" .a ... b ... a ... b ... 
of length greater than d. Denote by Nd(n) the maximal length of any 
such sequencej then a sequence of this length is a Davenport-Schinzel 
sequence. The problem is to determine all D-S sequences, and in par
ticular to find Nd(n). We need only consider normal sequences in which 
the first appearance of an integer of the alphabet comes after the first 
appearance of every smaller one. 



E20. Davenport-Schinzel sequences. 221 

The sequences 12131323, 12121213131313232323, and 

1213141 ... 1n-11n-1n-2 ... 32n2n3n ... nn-1n 
show that N4(3) 2: 8, Ns(3) 2: 20, and N4(n) 2: 5n - 8. Davenport 
& Schinzel showed that N 1(n) = 1, N 2(n) = n, N 3 (n) = 2n - 1; that 
N4(n) = O(nlnn/lnlnn), limN4(n)/n 2: 8 and, with J. H. Conway, that 
N4(lm + 1) 2: 6lm - m - 5l + 2, so that N4(n) = 5n - 8 (4 ~ n ~ 10). 
Z. Kolba showed that N 4 (2m) 2: 11m - 13 and Mills obtained the values 
of N4 (n) for n ~ 21. For example, the sequence 

abacadaeafafedcbgbhbhgcicigdjdjgekekgkjihflflhliljlkl 

(which, Günter Rote notes, was misprinted in the first edition) is part of 
the proof that N4 (12) = 53. 

Roselle & Stanton fixed n rather than d and obtained Nd(2) = d, 
Nd(3) = 2L3d/2J - 4 (d > 3), Nd(4) = 2L3d/2J + 3d - 13 (d > 4) and 
Nd(5) = 4L3d/2J +4d-27 (d > 5), though Peterkin observed that this last 
parenthesis should be (d > 6) since N6(5) = 34. Roselle & Stanton also 
showed that normal D-S sequences of length N2d+1 (5) are unique and that 
there are just two of length N 2d+l (4) and N 2d(5). Peterkin exhibited the 
56 D-S sequences of length N 5 (6) = 29 and showed that N 5 (n) 2: 7n - 13 
(n > 5) and N6 (n) 2: 13,t - 32 (n > 5). 

Table 8. Values of Nd(n). 
n 

d 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 
1111111111111111111111 
2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 
3 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 
4 1 4 8 12 17 22 27 32 37 42 47 53 58 64 69 75 81 86 92 98104 
5 1 5 10 16 22 29 
6 1 6 14 23 34 
7 1 7 16 28 41 
8 1 8 20 35 53 
9 1 9 22 40 61 

10 1 10 26 47 73 

Rennie & Dobson gave an upper bound for Nd(n) in the form 

(nd - 3n - 2d + 7)Nd(n) ~ n(d - 3)Nd(n - 1) + 2n - d + 2 (d> 3) 

thus generalizing the result of Roselle & Stanton for d = 4. 
Szemeredi showed that Nd(n) < cdnlog* n, where log* n is a slow

growing function, the least number of iterations of the exponential function 
needed to exceed n. More recent work, mainly by Sharir, has shown that 
the order of Nd(n) is 8(na(n)), where a(n) is the incredibly slow-growing 
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inverse of the Akermann function. See the paper of Agarwal, Sharir & Shor 
for precise details. 

P. K. Agarwal, M. Sharir & P. Shor, Sharp upper and lower bounds on the 
length of general Davenport-Schinzel sequences, J. Combin. Theory Sero A, 
52(1989) 228-274; MR 90m:11034. 
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103(1992) 233-25l. 
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sequences, RAIRO Inform. Theor. Appl. 26(1992) 387-402. 
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MR 53 #10703. 
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C. R. Peterkin, Some results on Davenport-Schinzel sequences, Congress. Numer. 
9, Proc. 3rd Manitoba Conf. Numer. Math., 1973, pp. 337-344; MR 50 #136. 

B. C. Rennie & Annette J. Dobson, Upper bounds for the lengths of Davenport
Schinzel sequences, Utilitas Math., 8(1975) 181-185; MR 52 #13624. 

D. P. Roselle, An algorithmic approach to Davenport-Schinzel sequences, Utilitas 
Math., 6(1974) 91-93; MR 50 #9780. 
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Numer. 1 Proc. Louisiana Conf. Combin. Graph Theory, Comput., (1970) 
249-267; MR 43 #68. 

D. P. Roselle & R. G. Stanton, Some properties of Davenport-Schinzel sequences, 
Acta Arith., 17(1970/71) 355-362; MR 44 #164l. 

M. Sharir, Almost linear upper bounds on the length of generalized Davenport
Schinzel sequences, Combinatorica, 7(1987) 131-143. 

Micha Sharir, Improved lower bounds on the length of Davenport-Schinzel se
quences, Combinatorica, 8(1988) 117-124; MR 89j:11024. 

R. G. Stanton & D. P. Roselle, A result on Davenport-Schinzel sequences, Com
binatorial Theory and its Applications, Proc. Colloq., Balatonfüred, 1969, 
North-Holland, 1970, pp. 1023-1027; MR 46 #3324. 
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E21 Thue sequences. 

Thue showed that there are infinite sequences on 3 symbols which contain 
no two identically equal consecutive segments, and sequences on 2 symbols 
which contain no three identically equal consecutive segments, and many 
others have rediscovered these results. 

If, instead of identically equal segments, we ask to avoid consecutive 
segments which are permutations of one another, Justin constructed ase
quence on 2 symbols without five consecutive segments which are permu
tations of each other, and Pleasants constructed a sequence on 5 symbols 
without two such consecutive segments. Dekking has solved the (2,4) and 
(3,3) problems, but describes the (4,2) case as an interesting open problem. 
1s there a sequence on 4 symbols without consecutive segments which are 
permutations of each other? 

S. Arshon, Demonstration de l'existence des suites asymetriques infinies (Russian. 
French summary), Mat. Sb., 2(44)(1937) 769-779. 

C. H. Braunholtz, Solution to Problem 5030 [1962,439], Amer. Math. Monthly, 
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T. C. Brown, Is there a sequence on four symbols in which no two adjacent 
segments are permutations of one another? Amer. Math. Monthly, 78(1971) 
886-888. 

Richard A. Dean, A sequence without repeats on x, X-I, y, y-I, Amer. Math. 
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E22 Cycles and sequences containing all 
permutations as subsequences. 

Hansraj Gupta asked, for n ;:::: 2, to find the least positive integer m = m( n) 
for which a cycle al, a2, ... , am of positive integers, each :::; n, exists such 
that any given permutation of the first n natural numbers appears as a 
subsequence (not necessarily consecutive) of 

for at least one j, 1 :::; j ~ m. For example, for n = 5, such a cycle is 
1, 2, 3, 4, 5, 4, 3, 2, 1, 5, 4, 5, so that m(5) ~ 12. He conjectures that 
m(n) ~ ln2 /2J. 

Motzkin & Straus used the ruler function (exponent of the highest 
power of 2 which divides k), e.g., n = 5, 1 ~ k ~ 31, 

1,2,1,3,1,2,1,4,1,2,1,3,1,2,1,5,1,2,1,3,1,2,1,4,1, 2,1,3,1,2,1, 

but this doesn't make use of the cyclic options and gives only m( n) ~ 2n -1. 

E23 Covering the integers with A.P.s. 

If S is the union of n arithmetic progressions, each with common difference 
~ k, where k ~ n, Crittenden & Vanden Eynden conjecture that S contains 
all positive integers whenever it contains those :::; k2n - k+1 • If this is true, 
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it's best possible. They have proved it for k = 1 and 2, and Simpson has 
proved it for k = 3. 

R. B. Crittenden & C. L. Vanden Eynden, Any n arithmetic progressions covering 
the first 2n integers covers all integers, Prac. Amer. Math. Soc., 24(1970) 
475-481. 

R. B. Crittenden & C. 1. Vanden Eynden, The union of arithmetic progressions 
with differences not less than k, Amer. Math. Monthly, 79(1972) 630. 

R. Jamie Simpson, Ph.D. thesis, Univ. of Adelaide, 1985. 

E24 Irrationality sequences. 

Erdös & Straus called a sequence of positive integers {an} an irrational
ity sequence if :E 1/anbn is irrational for all integer sequences {bn}. 
What are the irrationality sequences? Find some interesting ones. If 
limsup(log2lnan)/n > 1, where the log is to base 2, then {an} is an 
irrationality sequence. Notice that {nt} is not an irrationality sequence, 
because:E 1/n!(n+2) = ~. Erdös has shown that {22n } is an irrationality 
sequence. The sequence 2, 3, 7, 43, 1807, ... , where an+l = a; - an + 1, 
is not an irrationality sequence, since we may take bn = 1 and the sum of 
the reciprocals is 1, but what about the sequence of alternate terms, 2, 7, 
1807, ... ? 

P. Erdös, On the irrationality of certain series, Nederl. Akad. Wetensch. Frac. 
Sero A = Indagationes Math., 19(1957) 212-219; MR 19, 252. 

P. Erdös, On the irrationality of certain series, Math. Student, 36(1968) 222-226 
(1969); MR 41 #6787. 

P. Erdös, Some problems and results on the irrationality of the sum of infinite 
series, J. Math. Sei., 10(1975) 1-7. 

P. Erdös & E. G. Straus, On the irrationality of certain Ahmes series, J. Indian 
Math. Soc., 27(1963) 129-133 (1969); MR 41 #6787. 

E25 Silverman's sequence. 

The sequence 

1,2,2,3,3,4,4,4,5,5,5,6,6,6,6, 7, 7,7,7,8,8,8,8,9,9,9,9,9, ... 

defined by f(1) = 1 and f(n) as the number of occurrences of n in a 
nondecreasing sequence of integers was attributed to David Silverman in 
the first edition. It was given as a problem by Golomb, and solved by 
him, by van Lint, and by Marcus and Fine (see reference below): the 
asymptotic expression for the n-th term is indeed T 2- r n r - 1 where T is the 
golden number (1 + /'5)/2. The error term E(n) has been investigated by 
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!lan Vardi, who eonjeetures that 

( 7'-1) 
E(n) = O± ~nn 

where E(n) = O±(g(n)) means that there are eonstants Cl, C2 such that 
E(n) > c1g(n) and E(n) < -c2g(n) are eaeh true for infinitely many n, 
but he was unable to prove even that IE(n)1 is unbounded. He states some 
related unsolved problems. 

Marshall Hall proved the existenee of a sequenee such that every positive 
integer oceurs uniquely as the differenee of two members of the sequenee. 
For example, 

1,2,4,8,16,21,42,51,102,112,224,235,470,486,972,990,1980,2001, ... 

defined by a1 = 1, a2 = 2, a2n+1 = 2a2n, a2n+2 = a2n+1 + rn , where 
r n is the least natural number which eannot be represented in the form 
aj - ai with 1 :::; i < j :::; 2n + 1. There are other possible sequenees, but 
the problem of finding the ones with smallest asymptotie growth remains 
open. 

J. Browkin, Solution of a certain problem of A. Schinzel (Polish), Prace Mat., 
3(1959) 205-207. 

R. L. Graham, Problem E191O, Amer. Math. Monthly, 73(1966) 775; remark by 
C. B. A. Peck, 75(1968) 80-81. 

M. Hall, Cyclic projective planes, Duke Math. J., 4(1947) 1079-1090. 
Daniel Marcus & N. J. Fine, Solutions to Problem 5407, Amer. Math. Monthly, 

74(1967) 740-743. 
Themistocles M. Rassias, A solution to a problem of R. K. Guy & D. Silverman 

in number theory, 84T-1O-336, Abstracts Amer. Math. Soc., 5(1984) 330. 
W. Sierpinski, Elementary Theory 0/ Numbers, 2nd English edition (A. Schinzel) 

PWN, Warsaw, 1987, chap. 12,4 p. 444. 
Han Vardi, The error term in Golomb's sequence, J. Number Theory, 40(1992) 

1-11; MR 93d:11103. 

E26 Epstein's Put-or-Take-a-Square game. 

Riehard Epstein's Put-or-Take-a-Square game is played with one heap of 
beans. Two players play alternately. A move is to add or subtraet the 
largest perfeet square number of beans that is in the heap. That is, the 
two players alternately name nonnegative integers an, where 

the winner being the first to name zero. This is a loopy game and many 
numbers lead to a draw. For example, from 2 the next player will not take 
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1, allowing his opponent to win, so she goes to 3. Now to add 1 is a bad 
move, so her opponent goes back to 2. Similarly 6 leads to a draw with best 
play: 6, 10, 19!, 35, 60, 109!, 209!, 13!, 22!, 6, ... , where ! means a good 
move, not factorial! For example, 405 is a bad move after 209, since the 
next player can go to 5 which is a P-position (previous player winning). 
Similarly, from 60, it is bad to go to 11, an N-position , one in which the 
next player can win (by going to 20). 

Do either the P-positions 

0, 5, 20, 29, 45, 80, 101, 116, 135, 145, 165, 173, 236, 257, 397, 
404, 445, 477, 540, 565, 580, 629, 666, 836, 845, 885, 909, 944, 
949, 954, 975, 1125, 1177, ... 

or the N-positions 

1, 4, 9, 11, 14, 16, 21, 25, 30, 36, 41, 44, 49, 52, 54, 64, 69, 71, 
81, 84, 86, 92, 100, 105, 120, 121, 126, 136, 141, 144, 149, 164, 
169, 174, 189, 196, 201, 208, 216, 225, 230, 245, 252, 254, 256, 
261, ... 

have positive density? 

E. R. Berlekamp, J. H. Conway & R. K. Guy, Winning Ways for your Mathe
matical Plays, Academic Press, London, 1982, Chapter 15. 

E27 Max and mex sequences. 

In his master's thesis, Roger Eggleton discussed max sequences, in which 
a given finite sequence ao, ab ... , an is extended by defining an+! = 
maxi(ai + an-i). One of the main results is that the first differences are 
ultimately periodic. For example, starting from 1, 4, 3, 2 we get 7, 8, 11, 
12,15,16, ... with differences 3, -1, -1, 5,1,3,1,3,1, .... What happens 
to mex sequences, where the mex of a set of nonnegative integers is the 
minimum excluded number, or least nonnegative integer which does not 
appear in the set? Now the sequence 1, 4, 3, 2 continues 

0, 0, 0, 0, 0, 5, 1, 1, 1, 1, 1, 6, 2, 2, 0, 0, 0, 0, 0, 5, 1, 1, 1, 1, 1, 6, .... 

Are such sequences ultimately periodic? 
A. S. Fraenkel is reminded of the sequence ai = l io: J, where 0: is any 

real number, which satisfies the inequalities 

1 ~ i < n, n=2,3, .... 

E.g., 0: = !(1 + V5) generates the sequence 1, 3, 4, 6, 8, 9, 11, 12, 14, 16, 
17,19,21, ... which complements that for bi = lißJ, where 1/0:+ l/ß = 1. 
These Beatty sequences combine to form Wythoff pairs. 
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Motivation for this problem comes from the analysis of octal games 
using the Sprague-Grundy theory, where ordinary addition is replaced by 
nim addition, Le., addition in base 2 without carry, or XOR. Now 1, 4, 
3,2 leads to 

0, 0, 0, 0, 0, 5, 1, 4, 1, 1, 1, 3, 6, 6, 6, 3, 0, 2, 2, 2, 7, 2, 4, 1, .... 

The behavior of such sequences remains a considerable mystery, clarifica
tion of which would lead to results about nim-like games. 

S. Beatty, Problem 3173, Amer. Math. Monthly, 33 (1926) 159 (and see J. Lam
bek & L. Moser, 61 (1954) 454. 

E. R. Berlekamp, J. H. Conway & R. K. Guy, Winning Ways for your Mathe
matical Plays, Academic Press, London, 1982, Chapter 4. 

Michael Boshernitzan & Aviezri S. Fraenkel, Nonhomogeneous spectra of num
bers, Discrete Math., 34(1981) 325-327; MR 82d: 10077. 

Michael Boshernitzan & Aviezri S. Fraenkel, A linear algorithm for nonhomoge
neous spectra of numbers, J. Algorithms, 5(1984) 187-198; MR 85j:11183. 

R. B. Eggleton, Generalized integers, M.A. thesis, Univ. of Melbourne, 1969. 
Ronald L. Graham, Lin Chio-Shih & Lin Shen, Spectra of numbers, Math. Mag., 

51(1978) 174-176; MR 58 #10808. 

E28 B2-sequences. 

CaU an infinite sequence 1 ~ al < a2 < ... an A-sequence if no ai is the 
sum of distinct members of the sequence other than ai. Erdös proved that 
for every A-sequence, L: I/ai< 103, and Levine and O'Sullivan improved 
this to 4. They also gave an A-sequence whose sum of reciprocals is > 2.035. 
Abbott, and later Zhang, have given the example 

{1,2,4,8,1 + 24k,35950+ 24t: 1 ~ k ~ 55,0 ~ t ~ 44} 

which improves this to 2.0648. A furt her block of terms will push this past 
2.0649, but not as far as 2.065. 

If 1 ~ al < a2 < ... is a B2-sequence (compare C9), Le., a sequence 
where all the sums of pairs ai + aj are different, what is the maximum of 
L: I/ai? There are two problems, according as i = j is permitted or not, 
but Erdös was unable to solve either of them. 

The most obvious B2-sequence is that obtained by the greedy algo
rithm (compare ElO). Each term is the least integer greater than earlier 
terms which does not violate the distinctness of sums conditionj i = j is 
permitted: 

1,2,4,8,13,21,31,45,66,81,97,123,148,182, .... 

Mian & Chowla used this to show the existence of a B2-sequence with ak « 
k3. If M is the maximum of L: I/ai over all B2-sequences and S* is the sum 
of the reciprocals of the Mian-Chowla sequence, then M ~ S* > 2.156. But 
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Levine observes that if tn = n(n + 1)/2, then M ~ L: 1/(tn + 1) < 2.374, 
and asks if M = S*? Zhang disproves this by showing that S* < 2.1596 
and M > 2.1597. The latter result is obtained by replacing the next term, 
204, in the Mian-Chowla sequence, by 229, and then continuing with the 
greedy algorithm. 

Let al < a2 < ... be an infinite sequence of integers for which all the 
tripIe sums ai + aj + ak are distinct. Erdös offers $500.00 for a proof or 
disproof of an old conjecture of his, that !iman /n3 = 00. 

H. L. Abbott, On surn-free sequences, Aeta Arith., 48(1987) 93-96. 
P. Erdös, Problems and results in cornbinatorial analysis and cornbinatorial nurn

ber theory, Gmph Theory, Combinatories and Applieations, Vol. 1 (Kalarna
zoo MI, 1988) 397-406, Wiley, New York, 1991. 

Eugene Levine, An extrernal result for surn-free sequences, J. Number Theory, 
12(1980) 251-257. 

Eugene Levine & Joseph O'Sullivan, An upper estirnate for the reciprocal surn 
of a surn-free sequence, Aeta Arith., 34(1977) 9-24; MR 57 #5900. 

Abdul Majid Mian & S. D. Chowla, On the B2-sequences of Sidon, Proe. Nat. 
Aead. Bei. India Beet. A, 14(1944) 3-4; MR 7, 243. 

J. O'Sullivan, On reciprocal sums of surn-free sequences, PhD thesis, Adelphi 
University, 1973. 

Zhang Zhen-Xiang, A surn-free sequence with larger reciprocal surn, Diserete 
Math., (1992) 

Zhang Zhen-Xiang, A B2-sequence with larger reciprocal surn, Math. Comput., 
60(1993) 835-839. 

Zhang Zhen-Xiang, Finding finite B2-sequenees with larger m-a:,e, Math. Com
put., 61(1993); MR 93m:ll012. 

E29 Sequence with sums and products all in one 
of two classes. 

Partition the integers into two dasses. Is it true that there is always a 
sequence {ai} so that an the sums L: €iai and an the products TI a~i where 
the €i are 0 or 1 with an but a finite number zero, are in the same dass? 
Hindman answered this question of Erdös negatively. 

Is there a sequence al < a2 < ... so that all the sums ai + aj and 
products aiaj are in the same dass? Graham proved that if we partition 
the integers [1,252] into two dasses, there are four distinct numbers x, 
y, x + y and xy all in the same dass. Moreover, 252 is best possible. 
Hindman proved that if we partition the integers [2,990] into two dasses, 
then one dass always contains four distinct numbers x, y, x + y and xy. 
No corresponding result is known for the integers ;::: 3. 

Hindman also proved that if we partition the integers into two dass
es, there is always an infinite sequence {ai} so that all the sums ai + aj 
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(i = j permitted) are in the same class. On the other hand he found a 
decomposition into three classes so that no such infinite sequence exists. 

J. Baumgartner, A short proof of Hindman's theorem, J. Combin. Theory Sero 
A, 17(1974) 384-386. 

Neil Hindman, Finite sums with sequences within cells of a partition of n, J. Com
bin. Theory Sero A, 17(1974) 1-11. 

Neil Hindman, Partitions and sums and products of integers, Trans. Amer. Math. 
Soc., 247(1979) 227-245; MR 80b:10022. 

Neil Hindman, Partitions and sums and products - two counterexamples, J. Com
bin. Theory Sero A, 29(1980) 113-120. 

E30 MacMahon's prime numbers of 
measurement. 

MacMahon's "prime numbers of measurement," 

1,2,4,5,8,10,14,15,16,21,22,25,26,28,33,34,35,36,38,40,42, ... 

are generated by excluding all the sums of two or more consecutive earlier 
members of the sequence. 

If m n is the n th member of the sequence, and Mn is the sum of the 
first n members, then George Andrews conjectures that 

i m n rv n(lnn)/lnlnn ? and i Mn rv n2(lnn)/ln(lnn)2 ? 

and poses the following, presumably easier, problems: prove lim n-ßmn = ° for some a < 2; prove limmn/n = 00; prove mn < Pn for every n, where 
Pn is the n th prime. 

Jeff Lagarias suggests excluding only the sums of two or three consecu
tive earlier members, and asked if the resulting sequence 

1,2,4,5,8,10,12,14,15,16,19,20,21,24,25,27,28,32,33,34, 
37,38,40,42,43,44,46,47,48,51,53,54,56,57,58,59,61, ... 

has density ~. Don Coppersmith has a better heuristic, suggesting that 
the answer is 'no.' 

More generally, if 1 ~ al < a2 < ... < ak ~ n is a sequence in which no 
a is the sum of consecutive earlier members, then Pomerance found that 
max k ~ l ~ J and R6bert Freud later showed that max k ~ ~~ n. They 
notice, with Erdös, that max k ~ ~n, even if we only forbid sums of two 
consecutive earlier members. Coppersmith & Phillips have since shown 
that maxk ~ ~~n - 0(1) and they lower the upper bound to 

maxk ~ (~-€)n+O(lnn) with 
1 

€ = 896' 



E31. Three sequences of Hofstadter. 

Erdös asks if the lower density of the sequence is zero; perhaps 
1 1 -"'--0 lnx ~ a· 

a,<x ' 
? 
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G. E. Andrews, MacMahon's prime numbers ofmeasurement, Amer. Math. Month
ly, 82(1975) 922-923. 

Don Coppersmith & Steven Phillips, On a question of Erdös on subsequence 
sums, (preprint, Nov. 1992). 

R6bert Freud, James Cook Math. Notes, Jan. 1993. 
R. L. Graham, Problem 1910, Amer. Math. Monthly, 73(1966) 775; solution 

75(1968) 80-81. 
Jeff Lagarias, Problem 17, W. Coast Number Theory Conf., Asilomar, 1975. 
P. A. MacMahon, The prime numbers of measurement on ascale, Proc. Cam

bridge Philos. Soc., 21(1923) 651-654. 
Stefan Porubsky, On MacMahon's segmented numbers and related sequences, 

Nieuw Arch. Wisk.(3) 25(1977) 403-408; MR 58 #5575. 
N. J. A. Sloane, A Handbook 0/ Integer Sequences, Academic Press, New York, 

1973; sequences 363, 416, 1044. 

E31 Three sequences of Hofstadter. 

Doug Hofstadter has defined three intriguing sequences. 

(a) al = a2 = 1 and an = an-an_l + a n -an _2 for n 2:: 3. What is the 
general behavior of this sequence? 

1, 1, 2, 3, 3, 4, 5, 5, 6, 6, 6, 8, 8, 8, 10, 9, 10, 11, 11, 
12, 12, 12, 12, 16, 14, 14, 16, 16, 16, 16, 20, 17, 17, .. , 

Are there infinitely many integers 7, 13, 15, 18, ... that get 
missed out? 

(b) bl = 1, b2 = 2 and for n 2:: 3, bn is the least integer greater than 
bn - l which can be expressed as the sum of two or more consecutive 
terms of the sequence, so it goes 

1, 2,3, 5, 6, 8, 10, 11, 14, 16, 17, 18, 19, 21, 22, 24, 25, 29, 
30,32,33,34,35,37,40,41,43,45,46,47,49,51, ... 

This is a sort of dual of MacMahon's prime numbers of measure
ment (E30). How does the sequence grow? 

(c) Cl = 2, C2 = 3, and when Cl, ... , Cn are defined, form all possible 
expressions 
CiCj - 1 (1 ~ i < j ~ n) and append them to the sequence: 

2,3, 5, 9, 14, 17, 26, 27, 33, 41, 44, 50, 51, 53, 65, 69, 77, 
80,81,84,87,98,99,101,105,122,125,129, '" 

Does the result include almost all of the integers? 

A similar sequence to the first of these three was given by Conway: 

1, 1, 2, 2, 3, 4, 4, 4, 5, 6, 7, 7, 8, 8, 8, 8, 9, ... 
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defined, for n ~ 3, by 

a(n) = a(a(n - 1)) + a(n - a(n -1)). 

The difficult quest ions were answered in an entertaining paper by Mallows. 
Several identities have been obtained by Zeitlin. A variation is to define 

b(n) = b(b(n - 1)) + b(n - 1 - b(n - 1)), 

but this is related to the previous sequence by b(n - 1) = n - a(n). But if 
we write 

c(n) = c(c(n - 2)) + c(n - c(n - 2)) 

then the increments become very irregular, and it is not even clear that 
c(n)/n tends to a limit. 

W. A. Beyer, R. G. Schrandt & S. M. Ulam, Computer studies of some history
dependent random processes, LA-4246, Los Alamos Nat. Lab., 1969. 

J. H. Conway, Some crazy sequences, videotaped talk at A. T. & T. Bell Labora
tories, 88-07-15. 

Peter J. Downey & Ralph E. Griswold, On a family of nested recurrences, Fib
onacci Quart., 22(1984) 310-317; MR 86e:ll013. 

P. Erdös & R. L. Graham, Old and New Problems and Results in Combinatorial 
Number Theory, Monographie de L'Enseignement Mathematique, Geneve, 
28(1980) 83-84. 

Douglas R. Hofstadter, Gödel, Escher, Bach, Vintage Books, New York, 1980, 
p.137. 

Mark Kac, A history-dependent random sequence defined by Ulam, Adv. in Appl. 
Math., 10(1989) 270-277; MR 91c:ll042. 

Peter Kiss & Bela Zay, On a generalization of a recursive sequence, Fibonacci 
Quart., 30(1992) 103-109; MR 90e:ll022. 

Colin L. Mallows, Conway's challenge sequence, Amer. Math. Monthly, 98 (1991) 
5-20. 

David Newrnan, Problem E3274, Amer. Math. Monthly, 95(1988) 555. 
Stephen M. Tanny, A well-behaved cousin of the Hofstadter sequence, Discrete 

Math., 105(1992) 227-239; MR 93i:ll029. 
David Zeitlin, Explicit solutions and identities for Conway's iterated sequence, 

Abstracts Amer. Math. Soc., 12(1991). 

E32 B2-sequences formed by the greedy 
algorithm. 

An old problem of Dickson is still unsolved. Given a set of k integers, al < 
a2 < ... < ak, define anH for n ~ k as the least integer greater than an 
which is not of the form ai + aj, i, j ~ n. Except for the prescribed section 
at the beginning of the sequence, these are sum-free sequences formed by 
the greedy algorithm (compare C9, C14, EIO, E28). 
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Is the sequence of differences an+l - an ultimately periodic? 
Such sequences may take a long time before the periodicity appears. 

For example, even for k = 2, if we take al = 1, a2 = 6, the sequence is 

1,6,8,10,13,15,17,22,24,29,31,33,36,38,40,45,4 7 ,52,54,56,59,61,63,68, ... 

and one can be forgiven for not immediately recognizing the pattern. Thy 
starting with the set {1,4,9,16,25}; after 82 irregular differences, it settles 
down to aperiod of length 224. 

Queneau (see reference at C4) considered the similar problem with 
i < j ::; n in place of i, j ::; n. Such O-additive sequences have also 
been conjectured to have ultimately periodic differences. Steven Finch has 
calculated 1 ~ million terms of the sequence whose first 6 terms are given 
as {3, 4, 6, 9,10, 17} without detecting any sign of ultimate periodicity of 
the differences. 

Selmer teIls me that Dickson's problem is the particular case h = 2 of 
Stöhr sequences : let al = 1 and define an+! for n ~ k to be the least 
integer greater than an which can not be written as the sum of at most 
h addends among al, a2, ... , an. Compare the h-bases of C12. In the 
great majority of cases, the sequence of differences an+l - an turns out to 
be ultimately periodic, but there are a few of the examined cases where 
periodicity has not been established. 

Neil J. Calkin, Sum-free sets and measure spaces, PhD thesis, Univ. of 
Waterloo, 1988. 

Neil J. Calkin & Steven R. Finch, Necessary and sufficient conditions for a sum
free set to be ultimately periodic (preprint, 1993). 

Peter J. Cameron, Portrait of a typical sum-free set, Surveys in Combinatorics 
1987, London Math. Soc. Lecture Notes, 123(1987) Cambridge Univ. Press, 
13-42. 

L. E. Dickson, The converse of Waring's problem, Bull. Amer. Math. Soc., 40 
(1934) 711-714. 

Steven R. Finch, Are O-additive sequences always regular? Amer. Math. Monthly, 
99(1992) 671-673. 

Ernst S. Seimer, On Stöhr's recurrent h-bases for N, Kgl. Norske Vid. Selsk. 
Skrifter, 3(1986) 1-15. 

Ernst S. Selmer & Svein Mossige, Stöhr sequences in the postage stamp problem, 
No. 32(Dec. 1984) Dept. Pure Math., Univ. Bergen, ISSN 0332-5407. 

E33 Sequences containing no monotone A.P.s. 

Erdös & Graham say that a sequence {ai} has a monotone A.P. of length 
k if there are subscripts i l < i 2 < ... < ik such that the subsequence aij' 
1 ~ j ~ k is either an increasing or a decreasing A.P. If M(n) is the number 
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of permutations of [1, n] which have no monotone 3-term A.P., then Davis 
et. al have shown that 

M(n) ~ 2n - 1 M(2n - 1) ::; (n!)2 M(2n) ::; (n + 1)(n!)2 

They ask if M(n)l/n is bounded. 
Davis et al have also shown that any permutation of (all) the positive 

integers must contain an increasing 3-term A.P., but there are permutations 
with no monotone 5-term A.P. It is not known whether a monotone 4-term 
A.P. must always occur. 

If the positive integers are arranged as a doubly-infinite sequence then 
a monotone 3-term A.P. must still occur, but it's possible to prevent the 
occurrence of 4-term ones. 

If all the integers are to be permuted then Tom Odda has shown that no 
7-term A.P. need occur in the singly-infinite case, but little else is known. 

J. A. Davis, R. C. Entringer, R. L. Graham & G. J. Simmons, On permutations 
containing no long arithmetic progressions, Acta Arith., 34(1977) 81-90; MR 
58 #10705. 

Tom Odda, Solution to Problem E2440, Amer. Math. Monthly, 82(1975) 74. 

E34 Happy numbers. 

Reg Allenby's daughter came home from school in Britain with the concept 
of happy numbers. If you iterate the process of summing the squares of 
the decimal digits of a number, then it's easy to see that you either reach 
the cycle 

4 - 16 - 37 - 58 - 89 - 145 - 42 - 20 - 4 

or arrive at 1. In the latter case you started from a happy number. The 
first hundred happy numbers are 

1 7 10 13 19 23 28 31 32 44 49 68 70 79 82 86 91 94 97 100 
103 109 129 130 133 139 167 176 188 190 192 193 203 208 219 226 230 236 239 262 
263 280 291 293 301 302 310 313 319 320 326 329 331 338 356 362 365 367 368 376 
ma~mm~~o~~w~m~~~~~~~ 
566 608 617 622 623 632 635 637 638 644 649 653 655 656 665 671 673 680 683 694 

It seems that about 1/7 of all numbers are happy, but what bounds on 
the density can be proved? How many consecutive happy numbers can 
you have? Can there be arbitrarily many? The first pair is 31, 32; the 
first tripie is 1880, 1881, 1882 and an example of five consecutive happy 
numbers is 44488, 44489, 44490, 44491, 44492. Give bounds on the length 
of such a consecutive set in terms of the size of its members. How large can 
the gaps be in the sequence of happy numbers? We can define the height 
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of a happy number to be the number of iterations needed to reach 1. For 
example, the least happy numbers of 

height 0 1 2 3 4 5 6 
are 1 10 13 23 19 7 356. 

Is 78999 the least happy number of height 77 Give bounds for the size 
of the least happy number of height h. 

If we replace squares by cubes, then the situation is dominated, at least 
in base 10, by the fact that perfect cubes are congruent to 0 or ±1 mod 9. 
The density of the corresponding numbers (1, 10, 100, 112, 121, 211, 778, 
... ) may be zero. Numbers == ° mod 3 converge to 153 and numbers 
== 2 mod 3 converge to 371 or 407, so that interest is confined to numbers 
== 1 mod 3. These converge to 370, or to one of the 3-cycles (55, 250, 133) 
or (160, 217, 352), or to one of the 2-cycles (919, 1459) or (136, 244), or, 
just occasionally, to 1. What proportion goes to each 7 

And what of higher powers7 And different bases7 

Henry Ernest Dudeney, 536 Puzzles f3 Curious Problems (edited Martin Gard
ner), Scribner's, New York, 1967, Problem 143, pp. 43, 258-259. 

Joseph S. Madachy, Mathematics on Vacation, Scribner's, New York, 1966, 
pp. 163-165. 

E35 The Kimberling shuffie. 

Clark Kimberling considered the array: 

[TI 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

2 QJ 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

4 2 [I] 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

6 2 7 [lJ 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

8 7 9 2 [ill 6 11 12 13 14 15 16 17 18 19 20 21 22 23 

6 2 11 9 120 13 8 14 15 16 17 18 19 20 21 22 23 24 

13 12 8 9 14 11 [1]] 2 16 6 17 18 19 20 21 22 23 24 25 

2 11 16 14 6 9 17 W 18 12 19 13 20 21 22 23 24 25 26 

18 17 12 9 19 6 13 14 ~ 16 21 11 22 2 23 24 25 26 27 

in which each row is obtained from the previous by boxing (and expelling) 
the main diagonal element, and then reading the first number after the box, 
the first before the box, the second after the box, the second before the box, 
and so on until all the initial numbers are read off, and then continuing 
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with all the remaining numbers (still in numericalorder). Is every number 
eventuallyexpelled? 

The numbers 1 2 3 
are expelled on rows 1 25 2 

and the numbers 1112 13 
are expelled on rows 32 83 44 

and the numbers 40 
are expelled on rows 93167 

and the numbers 242 
are expelled on rows 16509502 

456 
4 3 22 

1415 16 
14 7 66 

68 
181393 

322 
38293016 

7 8 
6 8 

17 18 
169 11 

106 
270186 

502 
118850522 

9 10 
10 5 

19 20 
49595 9 

147 
8765242 

669 
653494691 

In the alternate reading from the right and left of the box, one could 
instead start from the left first, leading to the array 

ITJ 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

2 m 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

2 4 I]] 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

4 6 2 m 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

2 8 6 9 [!] 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

9 10 6 11 8 [gI 2 13 14 15 16 17 18 19 20 21 22 23 24 

8 2 11 13 6 14 [ill 15 9 16 17 18 19 20 21 22 23 24 25 

14 15 6 9 13 16 11!IZ1 2 18 8 19 20 21 22 23 24 25 26 

11 2 16 18 13 8 9 19 []] 20 15 21 14 22 23 24 25 26 27 

which displays a similar chaotic behavior. 
In each array there is a small amount of pattern: observe knight's move 

arithmetic progressions of common difference 3. For example, in the orig
inal array, for each y ~ 0, the number n + 3y is in position 2y + 1 on row 
x + y, where, for each t ~ 0, 

n = 9· 2t - 3t - 7, 12· 2t - 3t - 8, 
when x = 3 . 2t - 1, 4· 2t - 1, 

resp. 15· 2t - 3t - 9 
resp. 5 . 2t - 1 

so that n + 3y is expelled on row 2x - 1 = 2y + 1. Le., 

n = 18· 2t - 3t - 13,24· 2t - 3t - 14, resp. 30· 2t - 3t - 15 
is expelled on row6· 2t - 3, 8· 2t - 3, resp. 10· 2t - 3 

for t = -1, 0, 1, '" . 

Clark Kimberling, Problem 1615, Crux Mathematicorum, 17#2(Feb 1991) 44. 
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E36 Klarner-Rado sequences. 

The sequence 
1, 2, 4, 5, 8, 9, 10, 14, 15, 16, 17, 18, 20, 26, 27, 28, 29, 30, 32, 33, 34, 

36, 40, 44, 47, 50, 51, 52, 53, 54, 56, 57, 58, 60, 62, 63, 64, 66, 68, 72, 80, 
83, 86, 87, 88, 89, 92, 93, 94, 98, 99, 100, 101, 102, 104, 105, 106, 108, 110, 
111, 112, 114, 116, 120, 122, 123, 124, 126, 128, 132, 134, 136, ... 
is the thinnest which contains 1, and whenever it contains x, also contains 
2x, 3x + 2 and 6x + 3. Does it have positive density? 

Several quest ions of this type were asked in the paper: 

David A. Klarner & Richard Rado, Arithmetic properties of certain recursively 
defined sets, Pacific J. Math., 53(1974) 445-463. 

In the review, MR 50 #9784, it was stated that a subsequent paper ("Sets 
generated by a linear operation", same J., to appear) settles many of the 
conjectures stated in this paper. Did it ever appear? See also: 

David A. Klarner & Richard Rado, Linear combinations of sets of consecutive 
integers, Amer. Math. Monthly, 80(1973) 985-989. 

David A. Klarner & Karel Post, Some fascinating integer sequences, Discrete 
Math., 106/107(1992) 303-309; MR 93i:11031. 

E37 Mousetrap. 

Cayley introduced a permutation problem he called Mousetrap which is 
loosely based on the card game Treize. Suppose that the numbers 1,2, ... , n 
are written on cards, one to a card. After shufHing (permuting) the cards, 
start counting the deck from the top card down. If the number on the card 
does not equal the count, transfer the card to the bottom of the deck and 
continue counting. If the two are equal then set the card aside and start 
counting again from 1. The game is won if all the cards have been set 
aside, hut lost if the count reaches n + 1. Cayley proposed two questions. 

1. For each n find all the winning permutations of 1,2, ... , n. 
2. For each n find the number of permutations that eliminate precisely i 
cards for each i, 1 ::; i ::; n. 

A third question arose during our investigations. Consider a permu
tation for which every number is set aside. The list of numbers in the 
order that they were set aside is another permutation. Any permutation 
obtained in this way we call a reformed permutation. 

3. Characterize the reformed permutations. 
The permutation 4213 is a winning permutation which gives rise to the 

permutation 2134; this in turn gives the reformed permutation 3214 which 
is not a winning permutation. 
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4. For a given n, what is the longest sequenee of reformed permuta
tions? 

5. Are there sequenees of arhitrary length? Are there any eycles other 
than 

1 ~ 1 ~ 1 ~ 1 . . . and 12 ~ 12 ~ 12 ~ 12 ... ? 

Modular Mousetrap. We ean play Mousetrap, hut instead of eount
ing n, n + 1, ... , we ean start again, ... , n, 1, 2, ... . Now at least 
as many eards get set aside. In fact if n is prime, then either the initial 
deck is a derangement, or all eards get set aside, so every sequenee eycles 
or terminates in a derangement. The identity permutation 123 ... n will 
always form a l-eycle and now there are also examples of nontrivial eycles. 

6. Are there k-eycles for every k ? What is the least value of n which 
yields a k-eycle? 

A. Cayley, A Problem in Permutations, Quart. Math. J., 1(1857), 79. 
A. Cayley, On the Game of Mousetrap, Quart. J. Pure Appl. Math., XV (1877), 

8-10. 
A. Cayley, A Problem on Arrangements, Proc. Roy. Soc. Edinburgh, 9(1878) 

338-342. 
A. Cayley, Note on Mr. Muir's Solution of a Problem of Arrangement, Proc. Roy. 

Soc. Edinburgh, 9(1878) 388-391. 
Richard K. Guy & Richard J. Nowakowski, Mousetrap, Proc. Erdös80 Keszthely 

Combin. Conf., 1993. [see also Amer. Math. Monthly, 101(1994).] 
T. Muir, On Professor Tait's Problem of Arrangement, Proc. Royal Soc. Edin

burgh, 9(1878) 382-387. 
T. Muir, Additional Note on a Problem of Arrangement, Proc. Royal Soc. Edin

burgh, 11(1882) 187-190. 
Adolf Steen, Some Formulae Respecting the Game of Mousetrap, Quart. J. Pure 

Appl. Math., XV(1878), 230-241. 
Peter Guthrie Tait, Scientijic Papers, vol. 1, Cambridge, 1898, 287. 

E38 Odd sequences. 

Call a sequenee of n zeros and ones, {ab ... , an}, odd if eaeh of the n 
sums 'E~::lk aiaHk, (k = 0, 1, ... , n - 1) is odd. For example, 1101 is odd. 
Pelikan eonjeetured that there were no odd sequenees if n ~ 5, hut Peter 
Alles showed that there are infinitely many: if 0 is an odd sequenee of 
length n and x and z are sequenees of n - 1 and 3n - 2 zeros, then oxozo 
and ozoxo are odd sequenees of length 7n - 3. For 

n= 
he finds 

1 
1 

4 
2 

12 
2 

16 24 25 36 
8 2 4 2 

37 40 45 
16 2 16 
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odd sequences and no others with n ::; 50. For example, 101011100011 and 
its reversal. He asks if n is always congruent to 0 or 1 modulo 4, and if, 
when there are odd sequences, they are always apower of two in number. 

Peter Alles, On a conjecture of J. Pelikan, J. Combin. Theory Sero A, 60 (1992) 
312-313; MR 93i:ll028. 

J. Pelikan, Problem, in Infinite and Finite Sets, Vol. III (Keszthely, 1973), 1549, 
Colloq. Math. Soc. Janos Bolyai, 10, North-Holland, Amsterdam, 1975. 



F. None of the Above 

The first few problems in this miscellaneous section are about lattice 
points, whose Euclidean coordinates are integers. Most of them are two
dimensional problems, but some can be formulated in higher dimensions as 
weIl. Some interesting books are 

J. W. S. Cassels, Introduetion to the Geometry of Numbers, Springer-Verlag, New 
York,1972. . 

L. Fejes T6th, Lagerungen in der Ebene, auf der Kugel und in Raum, Springer
Verlag, Berlin, 1953. 

J. Hammer, Unsolved Problems Coneerning Lattiee Points, Pitman, 1977. 
O.-H. Keller, Geometrie der Zahlen, Enzyklopedia der Math. Wissenschaften 12, 

B. G. Teubner, Leipzig, 1954. 
C. G. Lekkerkerker, Geometry of Numbers, Bibliotheca Mathematica 8, Walters

Noordhoff, Groningen; North-Holland, Amsterdam, 1969. 
C. A. Rogers, Paeking and Covering, Cambridge Univ. Press, 1964. 

Fl Gauß's lattice point problem. 

A very difficult unsolved problem is Gauß's problem. How many lattice 
points are there inside the circle with centre at the origin and radius r? 
If the answer is rrr2 + h(r), then Hardy & Landau showed that h(r) is 
not o(r1/ 2 (lnr)1/4). It is conjectured that h(r) = O(r1/2+€). Iwaniec & 
Mozzochi have shown that h(r) = O(r7/ 11+€), and the best that is known 
is h(r) = O(r46/ 73+€), by Huxley. 

One can ask analogous questions in three dimensions for the sphere and 
regular tetrahedron. For the rectangular tetrahedron of F22 see the paper 
of Lehmer and also that of Xu & Yau, but their suggested counterexample 
to Overhagen's upper bound for arbitrary convex bodies is incorrect. 

Chen Jing-Run, The lattice points in a circle, Sei. Sinica, 12(1963) 633-649; MR 
27 #4799. 

Javier Cilleruello, The distribution of the lattice points on circles, J. Number 
Theory, 43(1993) 198-202. 

Andrew Granville, The lattice points of an n-dimensional tetrahedron, Aequa
tiones Math., 41(1991) 234-241; MR 92b:ll070. 

Martin Huxley, Proe. London Math. Soe. (to appear). 
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Aleksandar Ivic, Large values of the error term in divisor problems and the mean 
square ofthe zeta-function, Invent. Math., 71(1983) 513-520; MR 84i:10046. 

H. Iwaniec & C. J. Mozzochi, On the divisor and circ1e problems, J. Number 
Theory, 29(1988) 60-93; MR 89g:1109l. 

D. H. Lehmer, The lattice points of an n-dimensional tetrahedron, Duke Math. 
J., 7(1940) 341-353. 

T. Overhagen, Zur Gitterpunktanzahl konvexer Körper im 3-dimensionalen euk
lidischen Raum, Math. Ann., 216(1975) 217-224; MR 57 #28l. 

Xu Yijing & Stephen Yau S.-T., A sharp estimate of the number of integral points 
in a tetrahedron, J. reine angew. Math., 423(1992) 199--219; MR 93d:ll067. 

F2 Lattice points with distinct distances. 
What is the largest number k of lattice points (x, y), 1 ::::; x, y ::::; n, which 
can be chosen so that their (;) mutual distances are all distinct? It is easy 
to see that k ::::; n. This bound can be attained for n ::::; 7, for example for 
n = 7 with the points (1,1), (1,2), (2,3), (3,7), (4,1), (6,6) and (7,7), but 
not for any larger value of n. Erdös & Guy showed that 

n 2/3-€ < k < cn/(ln n?/4 

and they conjecture that 

? 

One can also ask for "saturated" configurations, containing a minimum 
number of points which determine distinct distances, but such that no 
lattice point may be added without duplicating a distance. Erdös observes 
that this needs at least n2/ 3-€ lattice points. In one dimension he cannot 
improve on O(n1/ 3 ) and suspects that O(n1/2+€) is best possible. 

P. Erdös & R. K. Guy, Distinct distances between lattice points, Elem. Math., 
25(1970) 121-123; MR 43 #7406. 

F3 Lattice points, no four on a circle. 
Erdös & Purdy ask how many of the n2 lattice points (x, y), 1::::; x, y ::::; n 
can you choose with no four of them on a circle. It is easy to show n 2/ 3-€, 
but more should be possible. 

What is the smallest t so that you can choose t of the lattice points so 
that the m lines that they determine contain all the n2 lattice points? It 
is not hard to show t > cn2/ 3 and Noga Alon has since obtained the bounds 

cnd(d-l)/(2d-l) ::::; t(n, d) ::::; Cnd(d-l)/(2d-l) In n 

for the problem in any number, d, of dimensions. 

Noga Alon, Economical coverings of sets of lattice points, Geom. Funct. Anal, 
1 (1991) 224-230; MR 92g:52017. 
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F4 The no-three-in-line problem. 

Can 2n lattice points (x, y) (1 ::; x, y ::; n) be selected with no three in a 
straight line? This has been achieved for 2 ::; n ::; 32 and for severallarger 
even values of n. Guy & Kelly make four conjectures. 

1. There are no configurations with the symmetry of a reet angle which 
do not have the fuH symmetry of the square. 

2. The only configurations having the full symmetry of the square are 
those in Figure 17. The n = 10 configuration was first found by 
Acland-Hood. This conjecture has been verified by Flammenkamp 
for n ::; 60. 

3. For large enough n, the answer to the initial question is "no," Le., 
there are only finitely many solutions to the problem. The total 
number of configurations, not counting reflexions and rotations, is: 

n 2 3 4 5 6 
#114511 

789 
22 57 51 

10 
156 

11 12 13 
158 566 499 

and the configurations with specific symmetries have been enumera
ted for larger values of n. 

4. For large n we may select at most (c+t:)n lattice points with no three 
in line, where 3c3 = 211'2, i.e. c ~ 1.85. 

In the opposite direction, Erdös showed that if n is prime, it is possible 
to choose n points with no three in line, and Hall, Jackson, Sudbery & 
Wild have shown that for n large, (~ - t:)n such points can be found. 

00 
00 

-00-
o . . 0 
o . . 0 
-00-

-00-
· . 0 . . . . 0 . . 
· 0 . ... 0 . 

0-
o 

. . . . . . . 0 
. . . . 0 

· . . 0 . . 0 
· 0 . . . 0 . 
· . 0 -0 

.. 00 . 

Figure 17. 2n Lattice Points, No Three in Line, n = 2, 4, 10. 
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T. Thiele modifies Erdös's construction to show that one can find 
(~ - €)n points with no 3 in line and no 4 on a circle. 

The no-three-in-line problem is a discrete analog of an old problem of 
Heilbronn. Place n (2 3) points in a disk (or square, or equilateral triangle) 
of unit area so as to maximize the smallest area of a triangle formed by 
three of the points. If we denote this maximum area by ö'(n), then Heil
bronn originally conjectured that ö'(n) < c/n2 , but Koml6s, Pintz & Sze
meredi disproved this by showing that ö'(n) > (In n)/n2 • Roth showed that 
ö'(n) « l/n(lnln n)1/2; Schmidt improved this to ö'(n) « l/n(1n n)1/2 and 
Roth subsequently made the furt her improvement ö'(n) « l/ni-'-e, first 
with J.L = 2 - 2//5 > 1.1055 and later with J.L = (17 - V65)/8 > 1.1172. 

Given 3n points in the unit square, n 2 2, they determine n triangles 
in many ways. Choose the partition so as to minimize the sum of the 
areas, and let a*(n) be the maximum value of this minimum sum, taken 
over all configurations of 3n points. Then Odlyzko & Stolarsky show that 
n-1/2 «a*(n) «n-1/ 24 • Ifthe n triangles are required to be area disjoint 
it is not even clear that the sum of their areas tends to zero. 

Acland-Hood, Bull. Malayan Math. Soc., 0(1952-53) El1-12. 
Michael A. Adena, Derek A. Holton & Patrick A. Kelly, Some thoughts on the 

no-three-in-line problem, Proc. 2nd Austral. Conf. Combin. Math., Springer 
Lecture Notes, 403(1974) 6-17; MR 50 #1890. 

David Brent Anderson, Update on the no-three-in-line problem, J. Combin. The
ory Sero A, 27(1979) 365-366. 

W. W. Rouse Ball & H. S. M. Coxeter, Mathematical Recreations & Essays, 12th 
edition, University of Toronto, 1974, p. 189. 

C. E. Corzatt, Some extremal problems of number theory and geometry, PhD 
dissertation, Univ. of Illinois, Urbana, 1976. 

D. Craggs & R. Hughes-Jones, On the no-three-in-line problem, J. Combin. The
ory Sero A, 20(1976) 363-364; MR 53 #10590. 

Hallard T. Croft, Kenneth J. Falconer & Richard K. Guy, Unsolved Problems in 
Geometry, Springer-Verlag, New York, 1991, §E5. 

H. E. Dudeney, The Tribune, 1906-11-07. 
H. E. Dudeney, Amusements in Mathematics, Nelson, Edinburgh, 1917, 

pp. 94, 222. 
Achim Flammenkamp, Progress in the no-three-in-line problem, J. Combin. The

ory Sero A (submitted). 
Martin Gardner, Mathematical Games, Sei. Amer., 226 #5 (May 1972) 113-114; 

235 #4 (Oct 1976) 133-134; 236 #3 (Mar 1977) 139-140. 
Michael Goldberg, Maximizing the smallest triangle made by N points in a 

square, Math. Mag., 45(1972) 135-144. 
R. Goldstein, K. W. Heuer & D. Winter, Partition of Sinto n triples; solution 

to Problem 6316, Amer. Math. Monthly, 89(1982) 705-706. 
Richard K. Guy, Bull. Malayan Math. Soc., 0(1952-53) E22. 
Richard K. Guy & Patrick A. Kelly, The no-three-in-line problem, Canad. Math. 

Bull., 11(1968) 527-531. 
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R. R. Hall, T. H. Jackson, A. Sudbery & K. Wild, Some advances in the no
three-in-line problem, J. Combin. Theorg Sero A, 18(1975) 336-34l. 

Heiko Harborth, Philipp Oertel & Thomas Prellberg, No-three-in-line for seven
teen and nineteen, Discrete Math., 73(1989) 89-90; MR 90f:05041. 

P. A. Kelly, The use of the computer in game theory, M.Sc. thesis, Univ. of 
Calgary, 1967. 

Torliev Kli3ve, On the no-three-in-line problem 11, 111, J. Combin. Theorg Sero 
A, 24(1978) 126-127; 26(1979) 82-83; MR 57 #2962; 80d:05020. 

J. Koml6s, J. Pintz & E. Szemeredi, A lower bound for Heilbronn's problem, J. 
London Math. Soc.(2) 25(1982) 13-24; MR 83i:10042. 

Andrew M. Odlyzko, J. Pintz & Kenneth B. Stolarsky, Partitions of planar sets 
into small triangles, Discrete Math., 57(1985) 89-97; MR 87e:52007. 

Carl Pomerance, Collinear subsets of lattice point sequences - an analog of Sze
meredi's theorem, J. Combin. Theorg Sero A, 28(1980) 140-149. 

K. F. Roth, On a problem of Heilbronn, J. London Math. Soc., 25(1951) 198-204, 
esp. p. 204; 11, III, Proc. London Math. Soc., 25(1972) 193-212; 543-549. 

K. F. Roth, Developments in Heilbronn's triangle problem, Advances in 
Math., 22(1976) 364-385; MR 55 #2771. 

Wolfgang M. Schmidt, On aproblem ofHeilbronn, J. London Math. Soc., 4(1971/ 
72) 545-550. 

T. Thiele, J. Combin. Theorg Ser A (submitted). 

F5 Quadratic residues. Schur's conjecture. 

The quadratic residues of a prime p are the nonzero numbers r for which 
the congruence r == x2 mod p has solutions. There are ! (p - 1) of them 
in the interval [1,p - 1] and they are symmetrically distributed if p is of 
shape 4k + 1. If p = 4k - 1, there are more quadratic residues in the 
interval [1, 2k - 1] than in [2k, 4k - 2], but all known proofs use Dirichlet's 
class-number formula. 1s there an elementary proof? 

For the first few values of d it is easy to remember which primes have 
das a quadratic residue: 

d= -1 
d= -2 
d= -3 
d= -5 
d= -6 

p=4k+1 
p= 8k+ 1,3 
p = 6k+ 1 
p = 20k + 1,3,7,9 
p = 24k + 1,5,7,11 

d=2 
d=3 
d=5 
d=6 

p = 8k ± 1 
p = 12k± 1 
p = lOk± 1 
p= 24k± 1,5 

However, it's just an example of the Strong Law of Small Numbers that 
in these small cases the residues are just those in the first half or the 
end quarters of the period, according to the sign of d. The Legendre 

symbol, (~), is often used to indicate the quadratic character of a number 

a, a .1 p, relative to the prime p. 1ts value is ±1 according as ais, or is 

not, a quadratic residue of p. For example, (~1) = ±1 according as 
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P = 4k ± 1. The important properties of this symbol are that (~) = (~) 
if a == c mod P; and Gauß's famous quadratic reciprocity law, that for 

odd primes P and q, (~) = (~) unless P and q are both == -1 mod 4, in 

which case (~) = - (~). These can be used for making quick verifications 
of the quadratic character of quite large numbers. For example, 

G~~) = G~~) = C3:3) = C~3) Cl:3) = -Cl:3) = -C17
:) = -C2g) = +1 

in fact 173 == 542 mod 211. 
A useful generalization of the Legendre symbol is the Jacobi symbol 

(~) which is defined for a ..L band b any positive odd number, by the 
product 

II (;) 
of Legendre symbols, where b = TI Pi is the prime factorization of b, with 
repetitions counted. It has similar properties to the Legendre symbol, but 
note that, if b is not prime, then (~) = +1 does not necessarily imply that 
a is a quadratic residue of b. 

If R (respectively N) is the maximum number of consecutive quadratic 
residues (respectively nonresidues) modulo an odd prime p, then A. Brauer 
showed that for p == 3 mod 4, R = N < .;p. On the other hand, if p = 13, 
then N = 4 > JI3, since 5, 6, 7, 8 are an nonresidues of 13. Schur 
conjectured that N < .;p if p is large enough. Hudson proved Schur's 
conjecture; moreover, he believes that p = 13 is the only exception. 

A. Brauer, Über die Verteilung der Potenzreste, Math. Z., 35(1932) 39-50; Zbl. 
3,339. 

H. Davenport, The Higher Arithmetic, Fifth edition, Cambridge University Press, 
1982, pp.74-77. 

Richard H. Hudson, On sequences of quadratic nonresidues, J. Number Theory, 
3(1971) 178-181; MR 43 #150. 

Richard H. Hudson, On a conjecture of Issai Schur, J. reine angew. Math., 
289(1977) 215-220; MR 58 #16481. 

F6 Patterns of quadratic residues. 

What patterns of quadratic residues are sure to occur? It is easy to see 
that a pair of neighboring ones always do, since at least one of 2, 5 and 10 
is a residue, so that (1,2), (4,5) or (9,10) is such a pair. In the same way 
at least one of (1,3), (2,4) or (4,6) is a pair of residues differing by 2; (1,4) 
is a pair differing by 3; (1,5), (4,8), (6,10) or (12,16) is a pair differing by 
4; and so on. 
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Suppose that each of r, r + a, r + bis a quadratic residue modulo p. 
Emma Lehmer asks: for which pairs (a, b) will such a triplet occur for alt 
sufficiently large p? Denote by O(a, b) the least number such that a triplet 
is assured with r ~ O(a, b) for all p > p(a, b), and write O(a, b) = 00 if 
there is no such finite number. For example, Emma Lehmer showed that 
0(1,2) = 00, and more generally that O(a, b) = 00 if (a, b) == (1,2) mod 3; 
or if (a, b) == (1,3), (2,3) or (2,4) mod 5; or if (a, b) == (1,5), (2,3) or 
(4,6) mod 7. Is O(a,b) finite in an other cases? Emma Lehmer conjectures 
that it is finite if a and b are squares. Of course, O(a, b) = 1 if a, bare each 
one less than a square. As an example, let us see why 0(5,23) = 16. If 
the triplets (1,6,24) and (4,9,27) are not an residues then 6 and 3 are not, 
and 2 must be a residue. If the triplets (2,7,25) and (13,18,36) are not an 
residues, then 7 and 13 must be nonresidues. Under these circumstances, 
(r, r + 5, r + 23) are not an residues for 1 ~ r ~ 15, but when r = 16, 
(16,21,39) are residues. 

Table 9 contains what are believed to be the (minimum) values of 
O(a, b). They provide good evidence for the conjectured finiteness in an 
cases except those already noted. Can an upper bound be obtained in 
terms of a and b? 

What ab out patterns of four residues, r, r + a, r + b, r + c? Of course 
these won't necessarily occur if any of the four subpatterns of three residues 
aren't forced to do so. We need examine only (a, b, c) = (2,5,6), (1,6,7), 
(1,4,9), (5,6,9), (1,6,10), (1,7,10), ... where O(a, b), O(a, c), O(b, c) and 
O(b - a, c - a) are each known to be finite. Some corresponding values of 
O(a, b, c) are 0(1,4,9) = 357 (Peter Montgomery corrects an error in the 
first edition), 0(1,4,15) = 675, and of course 0(3,8,15) = 1. 

But although 0(1,6) = 24, 0(1,7) = 38, 0(5,6) = 49 and 0(6,7) = 57, 
it appears that 0(1,6,7) = 00. In fact the pattern r, r+a, r+b, r+c, r+d, 
with (a, b, c, d) = (1,6,7,10) is such that, for each of the five subpatterns 
of four, 0(1,6,7) = 0(1,6,10) = 0(1,7,10) = 0(5,6,9) = 0(6,7,10) = 00. 

It is customary to define k-th power residues as numbers r for which 
xk == r mod p has a solution, only with respect to those primes for which 
k divides p - 1. In the same way that we remarked that every prime> 10 
has a pair of consecutive quadratic residues not exceeding the pair (9,10), 
Hildebrand has shown that for each k there is a fixed bound, A(k, 2) so that 
every sufficiently large prime has a pair of consecutive k-th power residues 
below this bound. There is no such bound for 3 consecutive quadratic 
or quartic, etc., residues. The argument consists in forcing primes of the 
form 3k + 1 to be residues and those of the form 3k + 2 to be nonresidues. 
Similarly by making 2 a residue and as many odd primes as necessary 
nonresidues, there is no such bound below which four consecutive k-th 
power residues must appear for any k. This leaves open only the quest ion 
of three consecutive k-th powers for k odd. The case k = 3 was solved by 
the Lehmers, Mills & Selfridge. 
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Table 9. Values of O(a, b) for a < b :::; 25. 

a b=4 5 6 7 8 9 10 11 12 13 14 
1 45 00 24 38 00 84 26 00 00 00 00 

2 00 25 20 00 00 00 00 70 30 00 00 

3 174 39 00 00 1 00 55 00 00 36105 
4 00 00 00 00 91 36 00 00 00 00 

5 49 00 00 121 00 25 4 00 28 
6 57 00 33 30 00 24 00 42 
7 00 00 75 00 74 00 00 

8 66 00 00 00 00 30 
9 00 54 00 42 66 

10 00 60 85 00 

11 28 00 119 
12 00 00 

13 00 

a b= 15 16 17 18 19 20 21 22 23 24 25 
1 77 35 00 00 00 00 15 35 00 21 69 
2 54 00 00 00 00 25 98 00 00 00 00 

3 1 00 00 18 36 95 00 00 00 1 51 
4 126 60 00 38168 00 90 00 00 66 77 
5 00 00 64110 00 100 4 00 16 64 00 

6 60 36 38 00 62 78 60 78 00 45 00 

7 27 9 00 00 00 00 70 42 00 00 45 
8 1 00 00 77 00 48 00 00 42 1 00 

9 5"( 66 00 36 27 16 72 00 21 00 119 
10 55 00 00 32102 00 77 26 00 28 39 
11 49 00 39 00 00 00 64 00 00 25 00 

12 00 65 98 00 00 36 4 00 00 00 90 
13 42 00 00 00 36 00 00 00 00 36 00 

14 35 00 00 42 00 52 56 00 64 81 00 

15 66 27 69 00 49 25 99110 1105 
16 00 00 102 00 169 95 00 00 56 
17 00 00 76 64 00 00 00 00 

18 81 00 00 00 40185144 
19 00 33 00 00 36 96 
20 74 00 40 25 00 

21 93 00 70100 
22 00 00 98 
23 00 00 

24 63 

Alfred Brauer, Combinatorial methods in the distribution of kth power residues, 
in Probability and Statistics, 4, University of North Carolina, Chapel Hill, 
1969, 14-37. 

Adolf Hildebrand, On consecutive k-th power residues, Monatsh. Math., 102 
(1986) 103-114; MR 88a:11089. 

Adolf Hildebrand, On consecutive k-th power residues 11, Michigan Math. J., 38 
(1991) 241-253; MR 92d:11097. 

D. H. Lehmer & Emma Lehmer, On runs of residues, Proc. Amer. Math. Soc., 
13(1962) 102-106; MR 25 #2035. 

D. H. Lehmer, Emma Lehmer & W. H. Mills, Pairs of consecutive powerresidues, 
Canad. J. Math., 15(1963) 172-177; MR26 #3660. 
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D. H. Lehmer, Emma Lehmer, W. H. Mills & J. L. Selfridge, Machine proof 
of a theorem on cubic residues, Math. Comput., 16(1962) 407-415; MR 28 
#5578. 

Rene Peralta, On the distribution of quadratic residues and nonresidues modulo 
a prime number, Math. Comput., 58(1992) 433-440; MR 93c:11115. 

F7 A cubic analog of a Pell equation. 

Hugh Williams observes that if p == 3 mod 4, then the equation x2 _ py2 = 2 
has integer solutions just if the congruence w2 == 2 mod p does, Le. just if 

(~) = 1, and asks for a cubic analog in the cases where p ;f; ±1 mod 9: 

x3 + py3 + p2 z3 - 3pxyz = 3 is solvable just if w3 == 3 mod pis. Barrucand 
& Cohn have shown that this is true for p == 2 or 5 mod 9. What about 
p == 4 or 7 mod 9? This is a special case of a more general conjecture 
of Barrucand. If true, it would be useful in abbreviating the calculations 
needed to find the fundamental unit (regulator) of the cubic field Q ( ~) . 

P.-A. Barrucand & Harvey Cohn, A rational genus, dass number divisibility and 
unit theory for pure cubic fields, J. Number Theory, 2(1970) 7-21. 

H. C. Williams, Improving the speed of calculating the regulator of certain pure 
cubic fields, Math. Comput., 35(1980) 1423-1434. 

F8 Quadratic residues whose differences are 
quadratic residues. 

Gary Ebert asks us to find the largest collection of quadratic residues 
Ti mod pn, given pn == 1 mod 4, such that Ti - Tj is a quadratic residue 
for all pairs (i,j). 

F9 Primitive roots 

A primitive root, g, of a prime p is a number such that the residue classes 
of g, g2, ... , gP-l = 1 are all distinct. For example, 5 is a primitive root of 
23 because 

5, 52 == 2, 53 == 10, 4, -3, 8, -6, -7, 11, 9, -1, 
-5, -2, -10, -4, 3, -8, 6, 7, -11, -9, 1 

all belong to different residue classes mod 23. 
There is a famous conjecture of Artin, that for each integer g i= -1, g 

not a square, there are infinitely many primes p with g as a primitive root. 
Hooley proved this assuming the extended Riemann hypothesis, and Gupta 
& Murty proved it unconditionally for infinitely many g. Heath-Brown 
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has proved the remarkable theorem that, but for at most two exceptional 
primes PI, P2 the following is true: For each prime P there are infinitely 
many primes q with pa primitive root of q. For example, there are infinitely 
many primes q with either 2 or 3 or 5 as a primitive root. 

Erdös asks: if P is large enough, is there always a prime q < P so that 
q is a primitive root of p? 

Given a prime p > 3, Brizolis asks if there is always a primitive root 9 
of p and x (0< x < p) such that x == gX mod p. If so, can 9 also be chosen 
so that 0< 9 < p and 9 ..L (p - 1)? 

Vegh asks whether, for all primes p > 61, every integer can be expressed 
as the difference of two primitive roots of p. W. Narkiewicz notes that 
there is an affirmative answer for p > 1019 , so that this can, in theory, be 
answered by computer. 

If p and q = 4p2 + 1 are both primes, Gloria Gagola asks if 3 is a 
primitive root of q for all p > 3; is p = 193 the only odd prime for which 2 
is not a primitive root of q; is p = 653 the only prime for which 5 is neither a 
quadratic residue nor a primitive root of q; and is there a number, perhaps 
a function of p (such as 2p - 1 for large p), which is always a primitive root 
of q? 

The Lehmers have checked that 6 is a primitive root for all primes p 
of the form n 2 + 108 for p < 2.108 . 

Anton Dumitziu, Congruences du premier degre, Rev. Roumaine Math. Pures 
Appl., 10(1965) 1201-1234. 

Rajiv Gupta & Maruti Ram Murty, Aremark on Artin's conjecture, Invent. 
Math., 78(1984) 127-130; MR 86d:11003. 

D. R. Heath-Brown, Artin's conjecture for primitive roots, Quart. J. Math. 
Oxiom Ser.(2) 37(1986) 27-38; MR 88a:11004. 

C. Hooley, On Artin's conjecture, J. reine angew. Math., 225(1967) 209-220; MR 
34 #7445. 

Leo Murata, On the magnitude of the least primitive root, Asterisque No. 198-
200(1991) 253-257. 

Maruti Ram Murty & Seshadri Srinivasan, Some remarks on Artin's conjecture, 
Canad. Math. Bull., 30(1987) 80-85; MR 88e:11094. 

Michael Szalay, On the distribution of the primitive roots of a prime, J. Number 
Theory, 7(1975) 184-188; MR 51 #5524. 

Emanuel Vegh, Pairs of consecutive primitive roots modulo a prime, Prac. Amer. 
Soc., 19(1968) 1169-1170; MR 37 #6240. 

Emanuel Vegh, Primitive roots modulo a prime as consecutive terms of an arith
metic progression, J. reine angew. Math.,235(1969) 185-188; 11, 244(1970) 
185-188; III, 256(1972) 130-137; MR 39 #4086; 42 #1755; 46 #7137. 

Emanuel Vegh, A note on the distribution of the primitive roots of a prime, J. 
Number Theory, 3(1971) 13-18; MR 44 #2694. 
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FI0 Residues of powers of twO. 

Graham asks about the residue of 2n mod n. There are no solutions of 
2n == 1 mod n with n > 1. 2n == 2 mod n whenever n is a pseudoprime 
base 2 (see A12) or is a prime. The Lehmers have shown that the smallest 
solution of 2n == 3 mod n is n = 4700063497 = 19·47·5263229. Of course, 
n has to be composite, and it is not divisible by 2 or 3. In fact, Ml}kowski 

(see reference at B5) notes that if (~) and 0) are of opposite sign, Le. 
if p = 24k ± 7 or ± 11, then n is not divisible by p. 

Rotkiewicz (compare A12) notes that if m satisfies 2m == 3 mod m, 
then n = 2m - 1 is a solution of 2n - 2 == 1 mod n. 

Benkoski asked if there was a solution to 2n == 4 mod n which didn't end 
in 7 when written in decimal notation. Zhang Ming-Zhi gave the solutions 
where n == 1 or 3 mod 10 and asked if there were any with n == 9 mod 10. 

Victor Meally reports that 2n == -1 mod n for n = 3k and 2n == -2 
mod n for n = 2, 6, 66, 946, ... . Schinzel notes that the existence of 
infinitely many n such that 2n == -2 mod n is proved in the remark to 
Exercise 4 on p. 235 of Sierpinski's Elementary Theory 0/ Numbers, 2nd 
English Edition, 1987. 

Zhang Ming-Zhi, A note on the congruence 2n - 2 == 1 mod n (Chinese. Eng
Hsh summary), Sichuan Daxue Xuebao, 27 (1990) 130-131; MR 92b: 11003 
(where the wrong Benkoski reference appears to be given). 

Fll Distribution of residues of factorials. 

What is the distribution of 1!, 2!, 3!, ... , (p - 1)!, p! modulo p? About pie 
of the residue classes are not represented; Here are the missing ones for 
the first few values of p: 

p = 2 or 3, none. p = 5, {-2}. p = 7, {-2, -3}. 
p = 11, {-2, ±3, ±4}. p = 13, {-3, 4, -5}. 
p = 17, {4, 5, -6, -7, -8}. p = 19, {3, -5, -6, ±7, ±8}. 
p = 23, {-3, -4, -6, -7, -8, 1O}. 
p = 29, {-2, -4, 7, -8, -9, -10, -11, -12, 13, -14}. 
p = 31, {±3, 4, 8, ±1O, 11, 12, 13, 14}. 
p = 37, {3, 4, ±5, -9, 10, 11, -14, ±15, -18}. 

Until we reach the last two entries we might be tempted to conjecture 
that there were always at least as many negative entries as positive ones. 
Are there infinitely many examples of each case? The value p = 23 is 
remarkable in that the only duplicates are ±1. 

In answer to a question of Erdös, Rokowska & Schinzel show that if the 
residues of 2!, 3!, ... , (p-1)! are all distinct, then the missing residue must 



F13. Covering systems of congruences. 251 

be that of -9!, that p == 5 mod 8, and that there are no such p with 
5 < p ::; 1000. 

B. Rokowska & A. Schinzel, Sur une probleme de M. Erdös, Elem. Math., 15(1960) 
84-85. 

R. Stauduhar, Problem 7, Proc. Number Theory GonJ., Boulder, 1963, p. 90. 

F12 How often are a number and its inverse of 
opposite parity? 

For each x (0< x< p) where p is an odd prime, define x by xx == 1 mod p 
and 0 < x < p. Let Np be the number of cases in which x and x are 
of opposite parity. E.g., for p = 13, (x, x) = (1,1), (2,7), (3,9), (4,10), 
(5,8), (6,11), (12,12) so N 13 = 6. D. H. Lehmer asks usto find Np or at 
least to say something nontrivial about it. Np == 2 or 0 mod 4 according as 
p == ±1 mod 4. 

p 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 
Np 0 2 0 4 6 10 4 12 18 4 14 18 20 16 30 32 30 

F13 Covering systems of congruences. 

A system of congruences ai mod ni (1 ::; i ::; k) is called a covering 
system if every integer y satisfies y == ai mod ni for at least one value 
of i. For example: 0 mod 2; 0 mod 3; 1 mod 4; 5 mod 6; 7 mod 12. If 
c = nl < n2 < ... < nk then Erdös offers $500.00 for a proof or disproof 
of the existence of covering systems with c arbitrarily large. Davenport & 
Erdos, and Fried, found systems with c = 3; Swift with c = 6; Selfridge 
with c = 8; Churchhouse with c = 10; Selfridge with c = 14; Krukenberg 
with c = 18; and Choi with c = 20. 

Erdos offers $25.00 for a proof of the nonexistence of covering systems 
with all moduli ni odd, distinct, and greater than one; while Selfridge offers 
$900.00 for an explicit example of such a system. Berger, Felzenbaum & 
Fraenkel showed that the l.c.m. of the moduli of such a system must contain 
at least six prime factors. More generally, "odd" could be replaced by "not 
divisible by the first r primes." Simpson & Zeilberger showed that if the 
moduli are odd and squarefree then at least 18 primes are required. 

Jim Jordan offers comparable rewards to those mentioned above for 
solutions to the analogous problems far Gaussian integers (AI5). 

Erdos noted that you can have a covering system with all moduli ni 

distinct, squarefree, and greater than one by using the proper divisors of 
210: 



252 F. None of the Above 

ai 0 0 0 1 0 1 1 2 2 23 4 5 59 104 
ni 2 3 5 6 7 10 14 15 21 30 35 42 70 105 

Krukenberg used 2 and squarefree numbers greater than 3. Selfridge 
asks if you can have such a system with C ~ 3 in place of C = 2. He observes 
that the ni cannot all be squarefree with at most two prime factors, but 
the above example shows that you do not need more than three. 

It is easy, but not trivial, to prove that, for a covering system with 
distinct moduli, E~=ll/ni > 1. The sum can be arbitrarily elose to 1 if 
nl = 3 or 4. Selfridge & Erdös conjecture that EI/ni> 1 + Cn1 where 
Cn1 ----+ 00 with nl. 

Schinzel has asked for a covering system in which no modulus divides 
another. This would not exist if a covering with odd moduli does not exist. 

Simpson calls a covering system irredundant if it ceases to cover the 
integers when one of the congruences is removed. He has shown that if the 
l.c.m. of the moduli of such a system is TIpf' then the system contains at 
least E Cti (Pi - 1) congruences. 

Erdös conjectures that all sequences ofthe form d·2 k +l (k = 1, 2, ... ), 
d fixed and odd, which contain no primes can be obtained from covering 
congruences (see B21 for examples). Equivalently, the least prime factors 
of members of such sequences are unbounded. 

Mare Aron Berger, Alexander Gersh Felzenbaum & A. S. Fraenkel, Neeessary 
eonditions for the existenee of an ineongruent eovering system with odd 
moduli 11, Acta Arith., 48(1987) 73-79. 

S. L. G. Choi, Covering the set of integers by eongruenee dasses of distinct 
moduli, Math. Comput., 25(1971) 885-895; MR 45 #6744. 

R. F. Churehhouse, Covering sets and systems of eongruenees, in Computers in 
Mathematical Research, North-Holland, 1968,20-36; MR 39 #1399. 

Fred Cohen & J. L. Selfridge, Not every number is the sum or differenee of two 
prime powers, Math. Comput., 29(1975) 79-81. 

P. Erdös, Some problems in number theory, in Computers in Number Theory, 
Aeademie Press, 1971, 405-414; esp. pp. 408-409. 

J. Haight, Covering systems of eongruenees, a negative result, Mathematika, 
26(1979) 53--61; MR 81e:10003. 

J. H. Jordan, Covering dasses of residues, Canad. J. Math., 19(1967) 514-519; 
MR 35 #1538. 

J. H. Jordan, A eovering dass of residues with odd moduli, Acta Arith., 13(1967-
68) 335-338; MR 36 #3709. 

C. E. Krukenberg, PhD thesis, Univ. of Illinois, 1971, 38-77. 
A. Sehinzel, Reducibility of polynomials and covering systems of congruenees, 

Acta Arith., 13(1967) 91-101; MR 36 #2596. 
R. J. Simpson, Regular eoverings of the integers by arithmetic progressions, Acta 

Arith., 45(1985) 145-152; MR 86j:ll004. 
R. J. Simpson & D. Zeilberger, Neeessary eonditions for distinet eovering systems 

with squarefree moduli, Acta Arith.,59(1991) 59-70. 
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Zhang Ming-Zhi, A note on covering systems of residue classes, Sichuan Daxue 
Xuebaa 26(1989) 185-188; MR 92c:1l003. 

Stefan Zmim, A survey of covering systems of congruences, Acta Math. Univ. 
Garnen., 40-41(1982) 59-79; MR 84e:10004. 

F14 Exact covering systems. 

If a system of congruences is both covering and disjoint (each integer cov
ered by just one conguence) it is called an exact covering system. Neces
sary, but not sufficient, conditions for a system to be exact are L:7=11/ni = 
1 and (ni,nj) > 1 for all i, j, where the notation is as in the first sentence 
of F13. There is a theorem, variously attributed to subsets of {Davenport, 
Mirsky, Newman, Rado}, that if a set of distinct numbers > 1 are the 
moduli of congruences, then either there is a number which is not in any 
of them or there is a number which is in more than one of them. The inge
nious proof used a generating function and roots of unity. Combinatorial 
proofs were later given by Berger, Felzenbaum & Fraenkel and by Simpson. 

Znam notes that (nI, n2, ... , nk) > 1 is not, as stated in the first edition, 
a necessary condition, as is evinced by the example 0 (mod 6), 1 (mod 10), 
2 (mod 15) and 3, 4, 5, 7, 8, 9, 10, 13, 14, 15, 16, 19, 20, 22, 23, 25, 26, 27, 
28,29 (mod 30). He confirmed a conjecture of Mycielski by furt her proving 
that if pis the least prime divisor of nk, then nk = nk-I = ... = nk-p+I. 
He conjectured that if there exist only pairs of equal moduli, then the 
moduli are all of the form 2"3ß, but later he and Burshtein & Schönheim 
and Joel Spencer each gave counter-examples, such as 

0, 1 2,7 3,8 
mod 5 10 15 

13,28 4,9 
30 20 

14,34 
40 

19,39 
60 

59, 119 
120 

Stein proved that if there is a single pair of equal moduli, the rest being 
distinct, then ni = 2i (1 ~ i ~ k-l), nk = 2k- I . Zwirn proved analogously 
that if there is a tripIe of equal moduli, the rest being distinct, then ni = 2i 

(1 ~ i ~ k - 3), nk-2 = nk-I = nk = 3· 2k- 3 . Beebee has extended Stein's 
result by showing that a system is exact just if 

k 

sin?Tz = _2k - I rr sin ~(ai - z). 
i=l ni 

Simpson extended work by Burshtein & Schönheim and showed that if 
the primes PI < P2 < ... < Pt are those dividing the moduli of an exact 
covering system in which no modulus occurs more than N times, then 

t-I rr p' Pt S; N __ t_ 

P· -1 
i=l t 
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The main outstanding problem is to characterize exact covering con
gruences. 

Porubsky asked if there is an "exactly m times covering system" which 
is not the union of m exact covering systems. More generally, call such a 
system 8 reducible if there is a partition 8 = 81 U 82 such that 81 and 
82 are exactly l times and exactly m -l times covering systems for some l, 
o < l < m, and irreducible if there is no such partition. Zhang Ming-Zhi 
answers Porubskfs question affirmatively by showing that for every m > 1 
there is an irreducible exactly m times covering system. This had already 
been shown for m = 2 by S. L. G. Choi (Keszthely, 1973) and by Zeilberger, 
e.g.: 

1(2); 0(3); 2(6); 0,4,6,8(10); 1,2,4,7,10,13(15); 5,11,12,22,23,29(30). 
Infinite disjoint covering systems with all moduli distinct can exist. If 

the sum of the reciprocals of the moduli is 1, such systems exist with 
moduli {2, 22,23 , ... } and with sets of moduli of shape 2Q 3ß. Praenkel & 
Simpson conjecture that these are the only types. Lewis showed that the 
only possible exceptions had an infinite set of distinct primes dividing their 
moduli. 

Questions can also be asked about covering systems of Beatty sequences 
(E27). Graham showed that if 

L mai + ßd; mEZ; 1 $ i $ k 

is such a system with k > 2 and at least one ai irrational, then some two 
ai must be equal. This is not so if all the ai are rational, since 

l 2k - 1 . IJ 
m 2k - i + 1 - 2t - (l$i$k) 

are exactly covering systems. Praenkel conjectures that the only such sys
tems with distinct ai are of this form. 

There are connexions with pseudoperfect numbers (B2) and with Egyp
tian fractions (D 11 ) . 

John Beebee, Examples ofinfinite, incongruent exact covers, Amer. Math. Month
ly, 95(1988) 121-123; errata 97(1990) 412; MR, 89g:11013, 91a:ll013. 

John Beebee, Some trigonometrie identities related to exact covers, Proc. Amer. 
Math. Soc., 112(1991) 329-338; MR, 9li:ll013. 

John Beebee, Bernoulli numbers and exact covering systems, Amer. Math. Month
ly, 99(1992) 946-948; MR 93i:ll025. 

Mare Aron Berger, Alexander Gersh Felzenbaum & A. S. Fraenkel, A non
analytic proof of the Newman-Znam result for disjoint covering systems, 
Combinatorica, 6(1986) 235-243. 

Mare Aron Berger, Alexander Gersh Felzenbaum, A. S. Fraenkel & R. Holzman, 
On infinite and finite covering systems, Amer. Math. Monthly, 98(1991) 
739-742; MR 92g:11009. 
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N. Burshtein, On natural exactly covering systems of congruences having moduli 
occurring at most N times, Discrete Math., 14(1976) 205-214. 

N. Burshtein & J. Schönheim, On exactly covering systems of congruences having 
moduli occurring at most twice, Czechoslovak Math. J., 24(99)(1974) 369-
372; MR 50 #452l. 

J. Dewar, On finite and infinite eovering sets, in Proc. Washington State Univ. 
Conf. Number Theory, Pullman WA, 1971, 201-206. 

P. Erdös, On a problem concerning systems of congruenees (Hungarian; English 
summary), Mat. Lapok, 3(1952) 122-128. 

A. S. Fraenkel, The bracket function and complementary sets of integers, Canad. 
J. Math., 21(1967) 6-27. 

A. S. Fraenkel, Complementing and exactly covering sequences, J. Combin. The
ory Sero A, 14(1973) 8-20; MR 46 #8875. 

A. S. Fraenkel, A characterization of exactly covering congruenees, Discrete 
Math., 4(1973) 359-366; MR 47 #4906. 

A. S. Fraenkel, Further characterizations and properties of exactly covering con
gruences, Discrete Math., 12(1975) 93-100; erratum 397; MR 51 #10276. 

A. S. Fraenkel & R. Jamie Simpson, On infinite disjoint eovering systems, Proc. 
Amer. Math. Soc, 119(1993) 5-9; MR 93k:ll006. 

R. L. Graham, Covering the positive integers by disjoint sets of the form 
{l no: + ß J : n = 1,2, ... }, J. Combin. Theory Sero A, 15(1973) 354-358; 
MR 48 #391l. 

R. L. Graham, Lin Shen & Lin Chio-Shih, Spectra of numbers, Math. Mag., 
51(1978) 174-176; MR 58 #10808. 

I. Korec, On a generalisation of Mycielski's and Znam's eonjectures about eoset 
decomposition of abelian groups, Fundamenta Math., 85(1974) 41-48. 

I. Koree, On number of cosets in nonnatural disjoint covering systems, Colloq. 
Math. Soc. Janos Bolyai 51 (Number Theory, Vol. 1, Budapest, 1987), 
North-Holland, 1990, 265-278. 

Ethan Lewis, Infinite covering systems of eongruences which don't exist, Proc. 
Amer. Math. Soc., (1993). 

Ryozo Morikawa, Some examples of covering sets; On a method to construet 
eovering sets; On eventually covering families generated by the bracket fune
tion, Bull. Fac. Liberal Arts Nagasaki Univ., 21(1981) 1-4; 22(1981) 1-1; 
23(1982/83) 17-22; MR 84j:10064; 84i:10057; 84c:1005l. 

Ryozo Morikawa, Disjointness ofsequences [O:in+ßiJ, i = 1, 2, Proc. Japan Acad. 
Sero A Math. Sei., 58(1982) 269-271; MR 83m:10096. 

Morris Newman, Roots of unity and covering sets, Math. Ann., 191(1971) 279-
282; MR 44 #3972 & err. p. 1633. 

Bfetislav Novak & Stefan Znam, Disjoint eovering systems, Amer. Math. Month
ly, 81 (1974) 42-45. 

Stefan Porubsky, On m times covering systems of eongruenees, Acta Arith., 
29(1976) 159-169; MR 53 #2884. 

Stefan Porubsky, Results and problems on covering systems of residue classes, 
Mitt. Math. Sem. Giessen, 150(1981)85 pp.; MR 83j:10008. 

R. J. Simpson, Disjoint covering systems of congruences, Amer. Math. 
Monthly, 94(1987) 865-868; MR 89b:ll006. 
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R. J. Simpson, Exact coverings ofthe integers by arithmetic progressions, Discrete 
Math., 59(1986) 181-190. 

R. J. Simpson, Disjoint covering systems of rational Beatty sequences, Discrete 
Math., 92(1991) 361-369. 

Sherman K. Stein, Unions of arithmetic sequences, Math. Ann., 134(1958) 289-
294; MR 20 #17. 

Sun Zhi-Wei, On exactly m times covers, Israel J. Math., 77(1992) 345-348; MR 
93k:11007. 

Charles Vanden Eynden, On a problem of Stein concerning infinite covers, Amer. 
Math. Monthly, 99(1992) 355-358; MR 93b:11004. 

Doron Zeilberger, On a conjecture of R. J. Simpson about exact covering con
gruences, Amer. Math. Monthly 96(1989) 243. 

Zhang Ming-Zhi, Irreducible systems of residue classes that cover every inte
ger exactly m times (Chinese, English summary), Sichuan Daxue Xuebao, 
28(1991) 403-408; MR 92j:11001. 

Stefan Zn/1m, On Mycielski's problem on systems of arithmetical progressions, 
Colloq. Math., 15(1966) 201-204; MR 34 #134. 

Stefan Zn/1m, On exactly covering systems of arithmetic sequences, Math. Ann., 
180 (1969) 227-232; MR 39 #4087. 

Stefan Znam, A simple characterization of disjoint covering systems, Discrete 
Math., 12(1975) 89-91; MR 51 #12772. 

FI5 A problem of R. L. Graham. 

Szegedy won the prize that Graham offered for settling (affirmatively) the 
question: does 0 < al < a2 < ... < an imply that maxi,jai/(ai,aj);::: n? 
His proof, and that of Zaharescu, is for n sufficiently large. Cheng & 
Pomerance have given the specific bound 104275 but there is still a fair 
amount of ground to be covered. 

Cheng Yuanyou & Carl Pomerance, On Graham's conjecture, Rocky Mountain 
J. Math., (1994) (to appear). 

Paula A. Kemp, A conjecture of Graham concerning greatest common divisors, 
Nieuw Arch. Wisk.(4), 8(1990) 61-62; MR 91e:ll003. 

Rivka Klein, The proof of a conjecture of Graham for sequences containing 
primes, Proc. Amer. Math. Soc., 95(1985) 189-190; MR 86k:11002. 

J. W. Sander, On a conjecture of Graham, Proc. Amer. Math. Soc., 102(1988) 
455-458; MR 89c:11004. 

R. J. Simpson, On a conjecture of R. L. Graham, Acta Arith., 40(1981/82) 209-
211; MR 83j:10062. 

M. Szegedy, The solution of Graham's greatest common divisor problem, Com
binatorica, 6(1986) 67-71; MR 87i:11010. 

Alexandru Zaharescu, On a conjecture of Graham, J. Number Theory, 27 (1987) 
33-40; MR 88k:ll009. 
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F16 Products of small prime powers dividing n. 
Erdös defines A(n, k) as TIpa where the product is taken over primes p Iess 
than k with pa IIn and asks: is 

max min A(n + i, k) = o(k) ? 
n l::;i::;k 

He remarks that it is easy to show that it is O(k). 1s 

min max A(n + i, k) > kC 

n l::;i::;k 

for every c and sufficiently Iarge k? 1s 

k 1 

~ A(n+i,k) > clnk ? 

F17 Series associated with the (-function. 

Alf van der Poorten had asked for a proof that 

[ 
00 1 11'4] 36 00 1 

((4) = L n4 = 90 = 17 L n4(2n) 
n=l n=l n 

before he and others showed that 

1 00 1 [~( . ()) 2 1711'4 
2 L n4(2n) = in () In2sm 2 d() = 6480' 

n=l n 0 

1t is also known that 

00 1 211'V3 + 9 00 1 11'V3 
L (2n) = 27 ' L n(2n) = -9-' 
n=l n n=l n 

[ 
00 1 11'2] 00 1 

((2) = L n2 = (; = 3 L n2 (2n) , 
n=l n=l n 

00 (2)2n [00 1 ] 5 00 (_I)n-l 

2(sin-1 x)2 = ~ n2(2:) and ((3) = ~ n3 = 2 ~ n3(~) 

Some remarkable identities discovered by Gosper include 

L 30k - 112k 2 = ((3), 
k~l 4(2k -1)k3 ( k) 
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Louis Comtet, Advanced Combinatorics, D. Reidel, Dordrecht, 1974, p. 89. 
John A. Ewell, A new series representation for ((3), Amer. Math. Monthly, 

97(1990) 219-220; MR 91d:11103. 
R. William Gosper, Strip mining in the abandoned orefields of nineteenth cen

tury mathematics, Computers in Mathematics (Stanford CA, 1986), Lecture 
Notes in Pure and Appl. Math., Dekker, New York, 125(1990) 261-284. 

Leonard Levin, Polylogarithms and Associated Punctions, North-Holland, 
1981 [§7.62, and foreword by van der Poorten]. 

Alfred van der Poorten, A proof that Euler missed ... Apery's proof of the 
irrationality of ((3), Math. Intelligencer, 1(1979) 195-203. 

Alfred J. van der Poorten, Some wonderful formulas ... an introduction to poly
logarithms, Prac. Number Theory Conf., Queen's Univ., Kingston, 1979, 
269-286; MR 80i:10054. 

FI8 Size of the set of sums and products of a set. 

If al, a2, ... , an are n numbers (not necessarily integers), how big is the 
set of their sums and products in pairs? 

? 

Erdös & Szemeredi have proved that the cardinality is greater than 
n HC1 and less than n2exp(-c2Innjlnlnn). 

P. Erdös, Some recent problems and results in graph theory, combinatorics and 
number theory, Congress. Numer., 17 Proc. 7th S.E. Conf. Combin. Graph 
Theory, Comput., Boca Raton, 1976,3-14 (esp. p. 11). 

P. Erdös & E. Szemeredi, On sums and products of integers, Studies in Pure 
Mathematics, Birkhäuser, 1983, pp. 213-218; MR 86m:11011. 

FI9 Partitions into distinct primes with 
maximum product. 

In the first edition we asked: if n is large and written in the form n = 
a + b + c, 0 < a < b < c in every possible way, are all the products abc 
distinct, but Leech observed that Dl6 answers this negatively. See also 
Kelly's paper. The analogous problem of maximizing the l.c.m. in place of 
product was studied algorithmically by Drago. 

J. Riddell & H. Taylor asked if, among the partitions of n into distinct 
prim es, the one having the maximum product of parts is necessarily one 
of those with the maximum number of parts, but Selfridge answered this 
negatively with the example 

319 = 2 + 3 + 5 + 7 + 11 + 13 + 17 + 23 + 29 + 31 + 37 + 41 + 47 + 53 

= 3 + 5 + 11 + 13 + 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47 
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but the partition with the smaller number of parts gives the largest possible 
product. Is this the least counterexample? Can the cardinalities of the two 
sets differ by an arbitrarily large amount? 

Antonino Drago, Rules to find the partition of n with maximum l.c.m., Atti Sem. 
Mat. Fis. Univ. Modena, 16(1967) 286-298; MR 37 #180. 

J. B. Kelly, Partitions with equal products, Proc. Amer. Math. Soc., 15(1964) 
987-990. 

F20 Continued fractions. 

A number x may be expressed as a continued fraction 

b1 
x=ao+ b 

al+ ~ 
a2+ aa+'" 

which, out of kindness to the typesetter, is often written 

b1 b2 b3 
x=ao+------··· 

al+ a2+ a3+ 

When the numerators bi are all 1 the continued fraction is called simple, 
and may be written 

It may be finite or infinite, but if x is rational it is finite. In this case there 
are two possible forms, one of which has its last partial quotient, ak, 
equal to 1: 

7 
16 = [0; 2, 3, 2] = [0; 2, 3,1,1] 

Zaremba conjectured that given any integer m > 1, there is an integer a, 
o < a < m, a ..L m such that the simple continued fraction [0; al, ... , ak] 
for alm has ai ~ B for 1 ~ i ~ k where B is a small absolute constant 
(say B = 5). He was only able to prove ai ~ ein m. 

T. W. Cusick, Zaremba's conjecture and sums of the divisor function, Math. 
Comput., 61(1993) 171-176. 

S. K. Zaremba, La methode des "bons treillis" pour le calcul des integrales multi
ples, in Applications 0/ Number Theory to Numerical Analysis (Proc. Symp. 
Univ. Montreal, 1971) Academic Press, 1972, 93-119 esp. 69 & 76; MR 49 
#8271. 

F21 All partial quotients one or two. 

Not every number n can be expressed as the sum of two positive integers 
n = a + b so that the continued fraction for alb has all its partial quotients 
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equal to 1 or 2. For 11, 17 and 19 we can have 

4 5 
"7 = [0; 1, 1, 2, 1], 12 = [0; 2, 2, 2], and 

7 
12 = [0;1,1,2,2] 

but 23 can't be so expressed. However Leo Moser conjectured that there 
is a constant c such that every n can be so expressed with the sum of the 
partial quotients, L: ai < eIn n. 

Bohuslav Divis asked for a proof that in any real quadratic field there 
is always an irrational number whose simple continued fraction expansion 
has all its partial quotients 1 or 2. He also asks the same question with 1 
and 2 replaced by any pair of distinct positive integers. 

F22 Aigebraic numbers with unbounded partial 
quotients. 

Is there an algebraic number of degree greater than two whose simple con
tinued fraction has unbounded partial quotients? Does every such num
ber have unbounded partial quotients? Ulam asked particularly about the 
number e = l/(e + y) where y = 1/(1 + y). 

Littlewood observed that if () has a continued fraction with bounded 
partial quotients an, then liminfnlsinn()1 ~ A(()), where A(()) is not zero 
(though it is for almost all ()). He also asks if 

lim inf nl sin n() sin n4>1 = 0 

for all real () and 4> ? It is for almost all () and 4>. Cassels & Swinnerton
Dyer treat a dual problem and show incidentally that () = 21/ 3 , 4> = 41/ 3 

does not provide a counterexample. Davenport suggested that a computer 
might help with proving that 

I(x() - y)(x4> - z)1 < € 

has solutions for every (), 4> when, for example, € = lo or 510' 

Figure 18. Rectangular Tetrahedron. 



F23. Small differences between powers of 2 and 3. 261 

J. W. S. Cassels & H. P. F. Swinnerton-Dyer, On the product of three homo
geneous linear forms and indefinite ternary quadratic forms, Philos. Trans. 
Roy. Soc. London Sero A, 248(1955) 73-96; MR 17, 14. 

Harold Davenport, Note on irregularities of distribution, Mathematika, 3 (1956) 
131-135; MR 19, 19. 

John E. Littlewood, Some Problems in Real and Complex Analysis, Heath, Lex
ington MA, 1968, 19-20, Problems 5, 6. 

F23 Small differences between powers of 2 and 3. 

Problem 1 of Littlewood's book asks how small 3n - 2m can be in compar
ison with 2m . He gives as an example 

(the ratio of DU to E~). 
The first few convergents to the continued fraction (see F20) 

1 1 1 111 
1+------

1 + 1+ 2+ 2+ 3+ 1 + ... 

for log 3 to the base 2 are 

1 2 3 8 19 65 84 
l' l' 2' 5' 12' 41' 53' 

so Victor Meally observed that the octave may conveniently be partitioned 
into 12, 41 or 53 intervals, and that the system of temperament with 53 
degrees is due to Nicolaus Mercator (1620-1687; not Gerhardus, 1512-1594, 
of map projection farne). 

Ellison used the Gel'fond-Baker method to show that 

12X - 3YI > 2x e-x / 10 for x> 27, 

and Tijdeman used it to show that there is a c ;::: 1 such that 12x - 3YI > 
2X jxc . 

Croft asks the corresponding question for n! - 2m . The first few best 
approximations to n! by powers of 2 are 

5! 
27 

-1.34 

20! 
261 

+0.13 

22! 
270 

-0.10 

24! 
279 

+0.046 

61! 
2278 

+0.023 

63! 
2290 

-0.0017 

where the third row is the percentage error in the exponent. 

90! 
2459 

-0.0007 

In the "Stellingen" that accompanied Benne de Weger's PhD thesis he 
observed that if the primes PI, ... , Pt are given, then there is an effectively 
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computable constant C, depending only on the Pi, such that for an n, k1 , 

... , kt with n! =/:- p~l ... p~t it is true that 

In! - p~l ... p~t I > exp(Cnj In n). 

There is some experimental support for the conjecture that the right side 
could be replaced by exp( C' n In n). For a fixed m, the methods of his thesis 
will determine an solutions of 

n! - p~l ... p~t = m. 

Erdös believes the conjecture. He also observes that n! = 2a ± 2b only 
when n = 1, 2, 3, 4 and 5. 

F. Beukers, Fractional parts of powers of rationals, M ath. Proc. Cambridge Philos. 
Soc., 90(1981) 13-20; MR 83g:10028. 

A. K. Dubitskas, A lower bound on the value of 1I(3/2)kll (Russian), Uspekhi Mat. 
Nauk, 45(1990) 153-154; translated in Russian Math. Surveys, 45(1990) 
163-164; MR 91k:ll058. 

W. J. Ellison, Recipes for solving diophantine problems by Baker's method, Sem. 
Theorie Nombres, 1970-71, Exp. No. 11, C.N.R.S. Talence, 1971. 

R. Tijdeman, On integers with many small factors, Compositio Math., 26 (1973) 
319-330. 

F24 Squares with just two different decimal 
digits. 

Sin Hitotumatu asks for a proof or disproof that, apart from 102n , 4 . 102n 

and 9 . 102n , there are only finitely many squares with just two different 
decimal digits, such as 382 = 1444, 882 = 7744, 1092 = 11881, 1732 = 
29929, 2122 = 44944, 2352 = 55225 and 31142 = 9696996. 

F25 The persistence of a number. 

In the sequence 679, 378, 168, 48, 32, 6, each term is the product of the 
decimal digits of the previous one. Neil Sloane defines the persistence of 
a number as the number of steps (five in the example) before the number 
collapses to a single digit. The smallest numbers with persistence 1, 2, ... , 
11 are 10, 25, 39, 77, 679, 6788, 68889, 2677889, 26888999, 3778888999, 
277777788888899. There is no number less than 1050 with persistence 
greater than 11. Sloane conjectures that there is a number d such that 
no number has persistence greater than d. 

In base 2 the maximum persistence is 1. In base 3 the second term is 
zero or apower of 2. It is conjectured that an powers of 2 greater than 215 
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contain a zero when written in base 3. This is true up to 2500 . The truth of 
this conjecture would imply that the maximum persistence in base 3 is 3. 

Sloane's general conjecture is that there is a number d(b) such that the 
persistence in base b cannot exceed d(b). 

Erdös modifies the problem by letting f(n) be the product of the non
zero decimal digits of n, and asks how fast one reaches a one-digit number, 
and for which numbers is the descent slowest. He says that it is easy to 
prove that f(n) < n1- c , so that at most clnlnn steps are needed. 

N. J. A. Sloane, The persistence of a number, J. Recreational Math., 6(1973) 
97-98. 

F26 Expressing numbers using just ones. 

Let f(n) be the least number of ones that can be used to represent n using 
ones and any number of + and x signs (and parentheses). For example, 

80 = (1 + 1 + 1 + 1 + 1) x (1 + 1 + 1 + 1) x (1 + 1 + 1 + 1) 

so f(80) :::; 13. It can be shown that f(3 k ) = 3k and 3log3 n :::; f(n) :::; 
5log3 n where the logs are to base 3. Does f (n) rv 3log3 n ? 

Daniel Rawsthorne has shown that f(n) = 2a + 3b when n is of the 
form 2a3b and not greater than 310• Is this true for larger such n ? 

Is it always true that for a prime p, f(P) = 1 + f(P - 1) ? And that 
f(2p) = min{2 + f(P), 1 + f(2p - I)} ? 

J. H. Conway & M. J. T. Guy, 'Ir in four 4's, Eureka, 25(1962) 18-19. 
Richard K. Guy, Some suspiciously simple sequences, Amer. Math. Monthly, 

93(1986) 186-190; and see 94(1987) 965 & 96(1989) 905. 
K. Mahler & J. Popken, On a maximum problem in arithmetic (Dutch), Nieuw 

Arch. Wiskunde, (3) 1(1953) 1-15; MR 14, 852e. 
Daniel A. Rawsthorne, How many 1's are needed? Fibinacci Quart., 27(1989) 

14-17. 

F27 Mahler's generalization of Farey series. 

The Farey series of order n consists of all positive rational numbers in 
their lowest terms, with numerators and denominators not exceeding n, 
arranged in order of magnitude. For example, the Farey series of order 5 is 

1 1 1 ~ 1 2 ~ 2 ~ 1 Q ~ 3 Q ~ Q 2 ~ Q 
543 5 2 534 5 1 432 3 1 2 1 1 1 

The determinant formed from the numerators and denominators of two 
adjacent fractions is -1. Mahler regards the members of the sequence 
as positive real roots of linear equations whose coefficients have g.c.d. 1 
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and do not exceed n, and obtained the following apparent generalization to 
quadratic equations. List the coefficients (a, b, e) ofthe quadratic equations 

ax2 + bx + e = 0, a ~ 0, (a,b, e) = l,b2 ~ 4ae,max{a, Ibl, lei} ~ n 

which have positive real roots, in order of size of the roots. Then the third
order determinant (see F28) formed from any three consecutive rows of 
a, b, e appeared always to take the value 0 or ±1. In the first edition, 
Table 10 illustrated this for n = 2, with initial and final entries (0,1,0) 
and (0,0,1), corresponding to roots 0 and 00, just as the Farey series could 
include the terms ~ and ~. We also adopted a suggestion of Selfridge of 
duplicating rational roots to avoid trivial exceptions. The present Table 
10 is an excerpt from the generalized series for n = 3. The entry in the 
last column is the value of the determinant formed from that row and its 
immediate neighbors. 

Table 10. Segment of Generalized Farey Series of Order 3. 

a b e root determinant 
0 1 -1 1 
3 -1 -3 (1 + m)/6 0 
3 -2 -2 (1 + J7)/3 1 
2 0 -3 ../6/2 -1 
3 -3 -1 (3 + v'2i)/6 -1 
2 -1 -2 (1 + .;17)/4 0 
1 1 -3 (V13 - 1)/2 -1 
2 -2 -1 (1 + V3)/2 1 
3 -2 -3 (1 + v'iO)/3 0 
1 0 -2 .,fi -1 
3 -3 -2 (3 + v'33)/6 1 
0 2 -3 3/2 

The conjecture was verified for n ~ 5, but Lambertus Hesterman of 
Canberra discovered counterexamples \\-'hen n = 7; for example 

a b e 
2 -7 -7 
1 -3 -6 
1 -6 7 

root determinant 
(7 + v'105)/4 
(3 + v'33)/2 -2 

3 +.,fi 

Can this be rescued, or is it yet another example of the Strong Law of 
Small Numbers? Lewis Low proved that the absolute value of the deter
minant cannot exceed n. Can this bound be substantially reduced? 

What can be said ab out the fourth-order determinants associated with 
cubic equations? 
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H. Brown & K. Mahler, A generalization of Farey sequences: some exploration 
via the computer, J. Number Theory, 3(1971) 364-370; MR 44 #3959. 

Lewis Low, Some lattice point problems, PhD thesis, Univ. of Adelaide, 1979; 
Bull. Austral. Math. Soc., 21(1980) 303-305. 

Kurt Mahler, Some suggestions for further research, Res. Report No. 20, 1983, 
Math. Sci. Res. Centre, Austral. Nat. Univ. 

F28 A determinant of value one. 

The third order determinant 

al a2 a3 
a4 as a6 
a7 as ag 

may be defined as al (asag - a6as) - a2(a4ag - a6a7) + a3(a4as - asa7). 
Find whole numbers al, a2, ... ag, none of them 0 or ±1, so that 

al a2 a3 
a4 as a6 
a7 as ag 

a~ a~ a~ 
= 1 = a~ a~ a~ 

a~ a~ a~ 

In the first edition we attributed this to Basil Gordon. It was asked by 
Molnar, who only required that ai !- ±1, and did not restrict the order of 
the determinants to 3. A topological significance was given, with references 
to Hilton. Solutions by Morris Newman, Peter Montgomery, Harry Apple
gate, Francis Coghlan and Kenneth Lau appeared, some of orders greater 
than 3, including several parametric families, for example 

-8n 2 - 8n 2n + 1 
-4n2 -4n n+ 1 

-4n2 - 4n -1 n 

4n 
2n+1 
2n-1 

Richard McIntosh gave examples with a high proportion of Fibonacci 
numbers: 

1167 2 5 
1698 3 8 
2866 5 13 

610 5 13 
1054 8 21 
1665 13 34 

Rudolf Wytek restricted himself to integers > 1 and in the closing days 
of 1987 used a computer to find 

1
23211235112361 423 323 323 
9 6 7 9 5 7 17 11 16 

576 
647 
17 16 20 

11
8 7 8 
1211 7 
1715 16 

11
10 7 12 
427 
17 12 20 
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the second of which had been found earlier by Kenneth Lau. The others 
were new and are not special cases of any of the parametrie solutions. 
Solutions are evidently more numerous than might at first be thought. 

Danescu, Väjäitu & Zaharescu solve the problem for determinants of 
any order in which all the elements are ~ k for any given k. 

Will the problem extend to cubes? 

Alexandru Danescu, Viorel Väjäitu & Alexandru Zaharescu, Unimodular 
matrices whose components are squares of unimodular one. 

P. J. Hilton, On the Grothendieck group of compact polyhedra, Fundamenta 
Math., 61(1967) 199-214. 

P. J. Hilton, General Cohomology Theory & K-Theory, L.M.S. Leeture Notes, 1, 
Cambridge University Press, 1971, p. 58. 

E. A. Molnar, Relation between wedge cancellation and localization for complexes 
with two cells, J. Pure Appl. Alg., 3(1973) 141-158. 

E. A. Molnar, A matrix problem, Amer. Math. Monthly, 81(1974) 383-384; and 
see 82(1975) 999-1000; 84(1977) 809 and 94(1987) 962. 

Sadao Saito, Third-order determinant: E. A. Molnar's problem, Aeta Math. Sei., 
8(1988) 29-34; MR 89j:15031. 

F29 Two congruences, one of which is always 
solvable. 

Given a prime p, find pairs of functions f(x), g(x) such that one of the 
congruences f(x) == n, g(x) == n mod p is solvable for all integers n. A 
trivial example is f(x) = x2 , g(x) = ax2 where a is a quadratic nonresidue 
(F5) ofthe odd prime p. Mordell gives the further example f(x) = 2x+dx4 , 

g(x) = X -1/4dx2 , where dis any integer prime to p and 1/z is defined as 
z, where zz == 1 mod p. 

F30 A polynomial whose sums of pairs of values 
are all distinct. 

It was noted in Dl that no nontrivial solution of a5 +b5 = c5 +d5 is known. 
In fact x5 is a likely answer to the following unsolved problem of Erdös. 
Find a polynomial P(x) such that all the sums P(a) + P(b) (0 ~ a < b) 
are distinct. 

F31 An unusual digital problem. 

Express the integers in base 4, using the digits 0, 1, 2 and I (= -1). Let 
L be the set of integers which can be written in this way using the digits 
0, 1 and I, but not 2. Can every odd integer be written as the quotient of 
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two elements of L? Loxton & van der Poorten show that, given an odd k, 
there is indeed a multiplier m such that m and km are both in L, but their 
analysis is ineffective in the sense that they do not know how to estimate 
the smallest such m. It may be that there is an absolute constant C such 
that there is always a multiplier less than Iklc . Examples requiring large 
multipliers are k = 133 = 20114, m = 333 = 111114 and k = 501 = 201114, 
m = 2739 = IIH1114 • 

John Selfridge & Carole Lacampagne ask if every k == ±1 mod 3 can 
be written as the quotient of integers which can be represented in base 3 
using the digits 1 and 1, but not O. Experiments suggest that the answer 
is yes. If we allow the digits 0 and 1, but not 2, then which integers can be 
written as such a quotient? 

F. M. Dekking, M. Mendes France & A. J. van der Poorten, Folds! Math. Intel
ligencer, 4(1982) 130-138, 173-181, 190-195; MR 84f:10016abc. 

D. H. Lehmer, K. Mahler & A. J. van der Poorten, Integers with digits 0 and 1, 
Math. Comput., 46(1986) 683--689; MR 87e:ll017. 

J. H. Loxton & A. J. van der Poorten, An awful problem about integers in base 
four, Acta Arith., 49(1987) 193-203; MR 89m:ll004. 
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